PyTorch深度学习实战(28)——对抗攻击(Adversarial Attack)

news2025/1/19 11:10:34

PyTorch深度学习实战(28)——对抗攻击

    • 0. 前言
    • 1. 对抗攻击
    • 2. 对抗攻击模型分析
    • 3. 使用 PyTorch 实现对抗攻击
    • 小结
    • 系列链接

0. 前言

近年来,深度学习在图像分类、目标检测、图像分割等诸多领域取得了突破性进展,深度学习模型已经能够以接近甚至超越人类水平的完成某些特定任务。但最近的研究表明,深度学习模型容易受到输入数据中细微扰动的影响,从而导致模型输出错误的预测。在图像领域,此类扰动通常很小对于人眼而言甚至无法察觉,但它们却能够愚弄深度学习模型。针对深度学习模型的这种对抗攻击,限制了深度学习的成功在更广泛领域的应用。本节中,我们将介绍对抗攻击 (Adversarial Attack) 的基本概念,并使用 PyTorch 实现对抗攻击生成可欺骗神经网络的图像。

1. 对抗攻击

深度学习在执行各种计算机视觉任务方面都有着优异的准确性,但尽管深度学习模型的精确度很高,现代深度网络却容易被微小扰动形式的对抗攻击所干扰,这些扰动对虽然对人类视觉系统而言几乎无法感知,但却可能导致神经网络分类器完全改变其对图像的预测。甚至,被攻击的模型对错误的预测结果具有很高的置信度。对抗攻击 (Adversarial Attack) 是针对机器学习模型的一种攻击方式,通过精心构造的数据输入,来欺骗机器学习模型以使其产生错误的结果。
包含恶意扰动的数据通常称为对抗样本 (Adversarial Example),而对抗攻击 (Adversarial Attack) 则是构建对抗样本的并对目标模型实施攻击的过程。例如,如下图所示,通过在图像中添加不明显的扰动,并不会影响人类对其内容的判断,但深度神经网络却对扰动后的图像输出了完全错误的分类结果。

对抗样本示例

2. 对抗攻击模型分析

本质上,对抗攻击是对输入图像值(像素)进行更改。在本节中,我们将学习如何调整输入图像,以使训练后性能良好的深度学习模型对修改后的图像输出为指定类别而非原始类别:

  1. 使用红狐图像
  2. 指定模型预测对抗样本的目标类别
  3. 导入预训练模型,冻结模型参数 (gradients = False)
  4. 指定计算输入图像像素值(而非神经网络的权重)的梯度,因为在进行对抗攻击时,我们无法控制模型权重,只能修改输入图像
  5. 计算与模型预测和目标类别对应的损失
  6. 执行反向传播,获取与每个输入像素值相关的梯度
  7. 根据每个输入像素值对应的梯度方向更新输入图像像素值
  8. 重复步骤 5-7,直到模型以较高的置信度将修改后的图像预测为指定类别

3. 使用 PyTorch 实现对抗攻击

在本节中,我们使用 PyTorch 实现上述对抗攻击策略,以生成对抗样本。

(1) 导入相关库、读取输入图像和预训练 ResNet50 模型,另外需要冻结模型参数:

import numpy as np
import torch
from torch import nn
from matplotlib import pyplot as plt

from torchvision.models import resnet50
model = resnet50(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
model = model.eval()

import requests
from PIL import Image
file = '5.png'
original_image = Image.open(file).convert('RGB')
original_image = np.array(original_image)
original_image = torch.Tensor(original_image)

(2) 导入 Imagenet 类别文件并为每个类别分配 ID

image_net_classes = 'https://gist.githubusercontent.com/yrevar/942d3a0ac09ec9e5eb3a/raw/238f720ff059c1f82f368259d1ca4ffa5dd8f9f5/imagenet1000_clsidx_to_labels.txt'
image_net_classes = requests.get(image_net_classes).text
image_net_ids = eval(image_net_classes)
image_net_classes = {i:j for j,i in image_net_ids.items()}

(3) 定义函数执行图像归一化函数 image2tensor() 与逆归一化函数 tensor2image()

from torchvision import transforms as T
from torch.nn import functional as F
normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
denormalize = T.Normalize([-0.485/0.229, -0.456/0.224, -0.406/0.225], [1/0.229, 1/0.224, 1/0.225])

def image2tensor(input):
    x = normalize(input.clone().permute(2,0,1)/255.)[None]
    return x
def tensor2image(input):
    x = (denormalize(input[0].clone()).permute(1,2,0)*255.).type(torch.uint8)
    return x

(4) 定义预测给定图像类别的函数 predict_on_image()

def predict_on_image(input):
    model.eval()
    plt.imshow(input)
    # show(input)
    plt.show()
    input = image2tensor(input)
    pred = model(input)
    pred = F.softmax(pred, dim=-1)[0]
    prob, clss = torch.max(pred, 0)
    clss = image_net_ids[clss.item()]
    print(f'PREDICTION: `{clss}` @ {prob.item()}')

在以上代码中,将输入图像转换为张量(使用 image2tensor() 函数),并使用预训练模型预测模型类别 clss 及对应概率 prob

(5) 定义对抗攻击函数 attack

attack() 函数使用 imagemodeltarget 作为输入:

from tqdm import trange
losses = []
def attack(image, model, target, epsilon=1e-6):

将图像转换为张量,并指定计算输入图像梯度:

    input = image2tensor(image)
    input.requires_grad = True

计算模型对给定输入 input 的预测结果,然后计算目标类别 target 对应的损失值:

    pred = model(input)
    loss = nn.CrossEntropyLoss()(pred, target)

通过反向传播最小化损失值:

    loss.backward()
    losses.append(loss.mean().item())

根据梯度方向小幅度更新图像:

    output = input - epsilon * input.grad.sign()

在以上代码中,对输入值进行小幅度(乘以 epsilon )更新。也就是说,我们并未直接通过梯度大小更新图像,而是通过在梯度方向上 (input.grad.sign()) 乘以一个非常小的值 (epsilon) 后更新图像。

使用 tensor2image 方法将张量转换回图像后返回输出:

    output = tensor2image(output)
    del input
    return output.detach()

(6) 将图像修改为指定类别。

指定对抗攻击的目标类别 desired_targets

modified_images = []
desired_targets = ['lemon', 'comic book', 'sax, saxophone']

循环遍历 desired_targets,并在每次迭代中将目标类别转换为相应索引:

for target in desired_targets:
    target = torch.tensor([image_net_classes[target]])

修改图像进行对抗攻击,并将结果追加到列表 modified_images 中:

    image_to_attack = original_image.clone()
    for _ in trange(10):
        image_to_attack = attack(image_to_attack, model, target)
    modified_images.append(image_to_attack)

绘制修改后的图像,并显示相应的类别:

for image in [original_image, *modified_images]:
    predict_on_image(image)
# PREDICTION: `lemon` @ 0.9999375343322754
# PREDICTION: `comic book` @ 0.9998908042907715
# PREDICTION: `sax, saxophone` @ 0.9997311234474182

对抗攻击结果
可以看到,即使对图像进行非常微小的改动(甚至在人眼看来并无差别),模型也会对扰动样本以极高的置信度预测输出错误的类别。

小结

尽管深度神经网络在各种计算机视觉任务上具有很高的准确性,但研究表明它们容易受到微小扰动的影响,从而导致它们输出完全错误的预测结果。由于深度学习是当前机器学习和人工智能的核心技术,这一缺陷引起了研究人员广泛的兴趣。本文首先介绍了对抗攻击的基本概念,然后利用 PyTorch 实现了一种经典的对抗攻击算法,通过在图中添加微小扰动令红狐图像被错误的预测为指定类别,我们也可以通过改变攻击的目标索引,来使图像被错误分类为其它类别。

系列链接

PyTorch深度学习实战(1)——神经网络与模型训练过程详解
PyTorch深度学习实战(2)——PyTorch基础
PyTorch深度学习实战(3)——使用PyTorch构建神经网络
PyTorch深度学习实战(4)——常用激活函数和损失函数详解
PyTorch深度学习实战(5)——计算机视觉基础
PyTorch深度学习实战(6)——神经网络性能优化技术
PyTorch深度学习实战(7)——批大小对神经网络训练的影响
PyTorch深度学习实战(8)——批归一化
PyTorch深度学习实战(9)——学习率优化
PyTorch深度学习实战(10)——过拟合及其解决方法
PyTorch深度学习实战(11)——卷积神经网络
PyTorch深度学习实战(12)——数据增强
PyTorch深度学习实战(13)——可视化神经网络中间层输出
PyTorch深度学习实战(14)——类激活图
PyTorch深度学习实战(15)——迁移学习
PyTorch深度学习实战(16)——面部关键点检测
PyTorch深度学习实战(17)——多任务学习
PyTorch深度学习实战(18)——目标检测基础
PyTorch深度学习实战(19)——从零开始实现R-CNN目标检测
PyTorch深度学习实战(20)——从零开始实现Fast R-CNN目标检测
PyTorch深度学习实战(21)——从零开始实现Faster R-CNN目标检测
PyTorch深度学习实战(22)——从零开始实现YOLO目标检测
PyTorch深度学习实战(23)——使用U-Net架构进行图像分割
PyTorch深度学习实战(24)——从零开始实现Mask R-CNN实例分割
PyTorch深度学习实战(25)——自编码器(Autoencoder)
PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)
PyTorch深度学习实战(27)——变分自编码器(Variational Autoencoder, VAE)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1340060.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

React学习计划-React16--React基础(七)redux使用与介绍

笔记gitee地址 一、redux是什么 redux是一个专门用于做状态管理的js库(不是react插件库)它可以用在react、angular、vue的项目中,但基本与react配合使用作用:集中式管理react应用中多个组件共享的状态 二、什么情况下需要使用r…

go 源码解读 - sync.Mutex

sync.Mutex mutex简介mutex 方法源码标志位获取锁LocklockSlowUnlock怎么 调度 goroutineruntime 方法 mutex简介 mutex 是 一种实现互斥的同步原语。(go-version 1.21) (还涉及到Go运行时的内部机制)mutex 方法 Lock() 方法用于…

0.1+0.2≠0.3,揭秘Python自带的Bug

朋友们,问一个简单的问题:0.10.2? 你肯定会说:中国人不骗中国人,0.10.20.3。 但是在Python里,0.10.2≠0.3 ,我们今天一起来看看这个,并且看一下解决办法。 离奇的错误 在python里…

解决ELement-UI懒加载三级联动数据不回显(天坑)

最老是遇到这类问题头有点大,最后也是解决了,为铁铁们总结了一下几点 一.查看数据类型是否一致 未选择下 选择下 二.处理数据时使用this.$set方法来动态地设置实例中的属性,以确保其响应式 三.绑定v-if 确保每次重新加载 四.绑定key 五.完整代码

台阶仪在半导体行业中的广泛应用及其重要意义

台阶仪在半导体材料的表征和研究中是一种非常重要的工具。如在半导体材料的制备过程中,一些关键的工艺参数,如温度、压力、气氛等条件的变化,会导致半导体材料的能带结构发生变化,通过使用台阶仪,可以准确测量和分析材…

菜鸟学习vue3笔记-vue hooks初体验

import { ref } from "vue"; export default function () {let a1 ref(1);let a2 ref(5);let c ref(0);function add() {a1.value;a2.value;}return {add,a1,a2,c,}; }<template><div><p>第一个数字{{ a1 }}</p><p>第二个数字{{ a2…

解密Python高级特性:深度探讨装饰器与上下文管理器的魔法

写在开头 在Python编程的奇妙世界里,有两个被誉为编程魔法的特性:装饰器和上下文管理器。它们不仅如同纹章和护盾般赋予代码强大的能力,更是提升代码优雅性和可维护性的法宝。本篇文章将深入研究这两项高级特性,揭示它们的神秘面纱,同时通过丰富的实例展示它们的多样应用…

用C的递归函数求n!-----(C每日一编程)

用递归函数求n&#xff01; 有了上面这个递归公式就能写C代码了。 参考代码&#xff1a; int fac(int n) {if (n 1 || n 0)return 1;else return n * fac(n - 1); } void main() {int n;scanf("%d",&n);int f fac(n);printf("\n%d!%d\n", n, f); …

[Angular] 笔记 11:可观察对象(Observable)

chatgpt: 在 Angular 中&#xff0c;Observables 是用于处理异步数据流的重要工具。它们被广泛用于处理从异步操作中获取的数据&#xff0c;比如通过 HTTP 请求获取数据、定时器、用户输入等。Observables 提供了一种机制来订阅这些数据流&#xff0c;并可以在数据到达时执行相…

python实现一维傅里叶变换——冈萨雷斯数字图像处理

原理 傅立叶变换&#xff0c;表示能将满足一定条件的某个函数表示成三角函数&#xff08;正弦和/或余弦函数&#xff09;或者它们的积分的线性组合。在不同的研究领域&#xff0c;傅立叶变换具有多种不同的变体形式&#xff0c;如连续傅立叶变换和离散傅立叶变换。最初傅立叶分…

Python初学者必须吃透的69个内置函数!

所谓内置函数&#xff0c;就是Python提供的, 可以直接拿来直接用的函数&#xff0c;比如大家熟悉的print&#xff0c;range、input等&#xff0c;也有不是很熟&#xff0c;但是很重要的&#xff0c;如enumerate、zip、join等&#xff0c;Python内置的这些函数非常精巧且强大的&…

docker学习(二十一、network使用示例container、自定义)

文章目录 一、container应用示例1.需要共用同一个端口的服务&#xff0c;不适用container方式2.可用示例3.停掉共享源的容器&#xff0c;其他容器只有本地回环lo地址 总结 二、自定义网络应用示例默认bridge&#xff0c;容器间ip通信默认bridge&#xff0c;容器间服务名不通 自…

FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐我这里已有的 GT 高速接口解决方案我目前已有的SDI编解码方案 3、设计思路和框架设计框图GV8601A均衡EQGTX 时钟要求GTX 调用与控制SMPTE SD/HD/3G-SDISMPTE SD/HD/3G-SDI 接收SMPTE SD/HD/3G-SDI 发送 SDI 视频接收数据处理SDI 音频接收-…

天文观测与计算机技术:共舞在星辰大海

天文观测与计算机技术&#xff1a;共舞在星辰大海 在人类探索宇宙的历程中&#xff0c;天文观测和计算机技术如同一对并肩作战的勇士&#xff0c;共同书写着人类对宇宙的认知。本篇博客将深入探讨这两者如何交织在一起&#xff0c;为人类打开一扇又一扇探索宇宙的窗户。 一、…

羊大师教你如何选择适合孩子的羊奶,孩子成长的关键!

当谈到孩子的健康与成长时&#xff0c;正确的饮食是至关重要的。而在众多的饮品中&#xff0c;羊奶因其独特的营养价值备受家长们的青睐。那么&#xff0c;如何为孩子挑选适合的羊奶成为了一个重要的选择。下面&#xff0c;小编羊大师将为大家介绍如何选择适合孩子的羊奶。 我…

Flask 账号管理列表

Flask 账号管理列表 web/controllers/account/Account.py /index route_account Blueprint( account_page,__name__ )route_account.route( "/index" ) def index():resp_data {}req request.valuespage int( req[p] ) if ( p in req and req[p] ) else 1qu…

【Simulink系列】——用扫地机器人实例快速引入

目录 一、Simulink基本认知 1、模块图建模 2、仿真基本流程 3、调试技巧 二、基于模型的simulink设计实例&#xff08;两轮扫地机器人&#xff09; 1、系统定义与布局 确定建模目的 确定系统组件和接口 确定系统布局 2、建模并验证系统 对组件建模 ①物理组件建模 …

深度学习基础知识神经网络

神经网络 1. 感知机 感知机&#xff08;Perceptron&#xff09;是 Frank Rosenblatt 在1957年提出的概念&#xff0c;其结构与MP模型类似&#xff0c;一般被视为最简单的人工神经网络&#xff0c;也作为二元线性分类器被广泛使用。通常情况下指单层的人工神经网络&#xff0c…

如何使用甘特图进行项目管理?

或许你在工作中或项目启动会议上听说过“甘特图”一词&#xff0c;但对此了解不多。虽然这些图表可能变得相当复杂&#xff0c;但基础知识并不难掌握。通过本文&#xff0c;你将清楚地了解什么是甘特图、何时使用甘特图、创建甘特图的技巧等等。 什么是甘特图&#xff1f; 甘特…