模式识别与机器学习-SVM(线性支持向量机)

news2025/1/20 15:40:06

线性支持向量机

  • 线性支持向量机
    • 间隔距离
    • 学习的对偶算法
    • 算法:线性可分支持向量机学习算法
    • 线性可分支持向量机例子

谨以此博客作为复习期间的记录

线性支持向量机

在这里插入图片描述
在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢?其实可以看出,黑色的线具有更好的性质,因为如果将黑色的线作为分割平面,将会有更大的间隔距离。
其中,分割平面可以用以下式子表示:
w x + b = 0 wx+b = 0 wx+b=0
w 和 b w\text{和}b wb都是有待学习的参数,SVM的核心思想之一就是找到这样的一个平面,使得间隔距离最大。那么该如何表述间隔距离呢?

间隔距离

在分割平面 w x + b = 0 wx+b = 0 wx+b=0确定的情况下,对每一个样本点 x i , ∣ w x i + b ∣ x_i,|wx_i+b| xi,wxi+b可以表示样本点 x i x_i xi到分割平面的距离。而若是二分类, y i ∈ { 1 , − 1 } y_i \in \{1,-1\} yi{1,1},那么 y i ( w x i + b ) y_i(wx_i+b) yi(wxi+b)同样可以表示样本点到分割平面的距离。

对于二分类问题,数据点 x i \mathbf{x}_i xi 到超平面的函数间隔定义为: γ ^ i = y i ( w ⋅ x i + b ) \hat{\gamma}_i = y_i (\mathbf{w} \cdot \mathbf{x}_i + b) γ^i=yi(wxi+b)

函数间隔的正负号表示数据点所属的类别和超平面分割的一致性。当 γ ^ i > 0 \hat{\gamma}_i > 0 γ^i>0 时,数据点 x i \mathbf{x}_i xi 被正确地分类到超平面两侧的区域,而当 γ ^ i < 0 \hat{\gamma}_i < 0 γ^i<0 时,数据点被错误地分类或位于超平面上。若 γ ^ i = 0 \hat{\gamma}_i = 0 γ^i=0,则表示数据点在超平面上。

而这里就可以得出SVM的初步思想:最大化最小函数间隔,公式表述如下
m a x m i n ( γ ^ i ) i = 1... N max \quad min(\hat{\gamma}_i) \qquad i = 1...N maxmin(γ^i)i=1...N
也就是在所有样本点 ( x i , y i ) (x_i,y_i) (xi,yi)中,可以找到离分割平面最近的点,我们想让这些点的距离达到最大。但是有一个问题,但是选择分离超平面时,只有函数间隔还不够.因为只要成比例地改变 w w w b b b ,例如将它们改为 2 w 2w 2w 2 b 2b 2b ,超平面并没有改变,但函数间隔却成为原来的 2 倍.这一事实启示我们,可以对分离超平面的法向量 w w w 加某些约束,如规范化 ∣ ∣ w ∣ ∣ = 1 ||w|| = 1 ∣∣w∣∣=1,这时函数间隔就变为了几何间隔。
几何间隔 对于给定的训练数据集 T T T 和超平面 ( w , b ) (w, b) (w,b), 定义超平面 ( w , b ) (w, b) (w,b) 关于样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔为
γ i = y i ( w ∥ w ∥ ⋅ x i + b ∥ w ∥ ) \gamma_i=y_i\left(\frac{w}{\|w\|} \cdot x_i+\frac{b}{\|w\|}\right) γi=yi(wwxi+wb)

定义超平面 ( w , b ) (w, b) (w,b) 关于训练数据集 T T T 的几何间隔为超平面 ( w , b ) (w, b) (w,b) 关于 T T T 中所有样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔之最小值, 即
γ = min ⁡ i = 1 , ⋯   , N γ i \gamma=\min _{i=1, \cdots, N} \gamma_i γ=i=1,,Nminγi

超平面 ( w , b ) (w, b) (w,b) 关于样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔一般是实例点到超平面的带符号的距离 (signed distance), 当样本点被超平面正确分类时就是实例点到超平面的距离.

从函数间隔和几何间隔的定义 (式(7.3) 式(7.6))可知, 函数间隔和几何间隔有下面的关系:
γ i = γ ^ i ∥ w ∥ γ = γ ^ ∥ w ∥ \begin{gathered} \gamma_i=\frac{\hat{\gamma}_i}{\|w\|} \\ \gamma=\frac{\hat{\gamma}}{\|w\|} \end{gathered} γi=wγ^iγ=wγ^

如果 ∥ w ∥ = 1 \|w\|=1 w=1, 那么函数间隔和几何间隔相等. 如果超平面参数 w w w b b b 成比例地改变 (超平面没有改变),函数间隔也按此比例改变,而几何间隔不变.

那么,优化目标可以等价的表述如下
maximize γ subject to γ ≤ y i ( w ∥ w ∥ ⋅ x i + b ∥ w ∥ ) , i = 1 , 2 , … , n \begin{align*} & \text{maximize} \quad \gamma \\ & \text{subject to} \quad \gamma \leq y_i \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_i + \frac{b}{\|\mathbf{w}\|}\right), \quad i = 1, 2, \dots, n \end{align*} maximizeγsubject toγyi(wwxi+wb),i=1,2,,n
转化为几何间隔:

maximize γ ^ ∥ w ∥ subject to γ ^ ≤ y i ( w ⋅ x i + b ) , i = 1 , 2 , … , n \begin{align*} & \text{maximize} \quad \frac{\hat{\gamma}}{\|w\|} \\ & \text{subject to} \quad \hat{\gamma} \leq y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right), \quad i = 1, 2, \dots, n \end{align*} maximizewγ^subject toγ^yi(wxi+b),i=1,2,,n
可以令 γ ^ = 1 \hat{\gamma} = 1 γ^=1,目标函数变为 m a x i m i z e 1 ∣ ∣ w ∣ ∣ maximize \quad\frac{1}{||w||} maximize∣∣w∣∣1,等价于 m i n i m i z e 1 2 ∣ ∣ w ∣ ∣ minimize\quad \frac{1}{2}||w|| minimize21∣∣w∣∣.原问题可化为以下形式.
minimize 1 2 ∣ ∣ w ∣ ∣ 2 subject to y i ( w ⋅ x i + b ) − 1 ≥ 0 , i = 1 , 2 , … , n \begin{align*} & \text{minimize} \quad \frac{1}{2}||w||^2\\ & \text{subject to} \quad y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right) - 1\geq 0, \quad i = 1, 2, \dots, n \end{align*} minimize21∣∣w2subject toyi(wxi+b)10,i=1,2,,n
以上是一个凸优化问题,通过求解上述问题即可得到最终的最优决策平面。
在这里插入图片描述
在决定分离超平面时只有支持向量起作用,而其他实例点并不起作用.如果移动支持向量将改变所求的解;但是如果在间隔边界以外移动其他实例点,甚至去掉这些点,则解是不会改变的.由于支持向量在确定分离超平面中起着决定性作用,所以将这种分类模型称为支持向量机.支持向量的个数一般很少,所以支持向量机由很少的“重要的”训练样本确定.

学习的对偶算法

为了求解上述问题,可以构造拉格朗日函数,通过求解对偶问题得到原始问题的最优解。
这样做的优点,一是对偶问题往往更容易求解;二是自然引入核函数,进而推广到非线性分类问题。
首先构建拉格朗日函数 (Lagrange function). 为此, 对每一个不等式约束引进拉格朗日乘子 (Lagrange multiplier) α i ⩾ 0 , i = 1 , 2 , ⋯   , N \alpha_i \geqslant 0, i=1,2, \cdots, N αi0,i=1,2,,N, 定义拉格朗日函数:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i y i ( w ⋅ x i + b ) + ∑ i = 1 N α i L(w, b, \alpha)=\frac{1}{2}\|w\|^2-\sum_{i=1}^N \alpha_i y_i\left(w \cdot x_i+b\right)+\sum_{i=1}^N \alpha_i L(w,b,α)=21w2i=1Nαiyi(wxi+b)+i=1Nαi
其中, α = ( α 1 , α 2 , ⋯   , α N ) T \alpha=\left(\alpha_1, \alpha_2, \cdots, \alpha_N\right)^{\mathrm{T}} α=(α1,α2,,αN)T 为拉格朗日乘子向量.
根据拉格朗日对偶性,原始问题的对偶问题是极大极小问题:
max ⁡ α min ⁡ w , b L ( w , b , α ) \max _\alpha \min _{w, b} L(w, b, \alpha) αmaxw,bminL(w,b,α)

所以, 为了得到对偶问题的解, 需要先求 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) w , b w, b w,b 的极小, 再求对 α \alpha α 的极大.

拉格朗日函数为:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i y i ( w ⋅ x i + b ) + ∑ i = 1 N α i L(w, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^2-\sum_{i=1}^N \alpha_i y_i(\mathbf{w} \cdot \mathbf{x}_i+b)+\sum_{i=1}^N \alpha_i L(w,b,α)=21w2i=1Nαiyi(wxi+b)+i=1Nαi

其中, α = ( α 1 , α 2 , ⋯   , α N ) T \alpha=\left(\alpha_1, \alpha_2, \cdots, \alpha_N\right)^{\mathrm{T}} α=(α1,α2,,αN)T 为拉格朗日乘子向量。

接下来,我们进行极小化 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) w w w b b b的过程。需要对 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) 分别对 w w w b b b 求偏导,并令其等于零:

w w w 的偏导数:
∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 \frac{\partial L}{\partial w} = w - \sum_{i=1}^N \alpha_i y_i x_i = 0 wL=wi=1Nαiyixi=0
得到: w = ∑ i = 1 N α i y i x i w = \sum_{i=1}^N \alpha_i y_i x_i w=i=1Nαiyixi

b b b 的偏导数:
∂ L ∂ b = − ∑ i = 1 N α i y i = 0 \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i y_i = 0 bL=i=1Nαiyi=0
得到: ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0

将上述对 w w w b b b 的结果代入拉格朗日函数 L ( w , b , α ) L(w, b, \alpha) L(w,b,α),得到极小化后的结果

这样,对偶问题可以表示为:
min ⁡ α − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i \min_\alpha -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N \alpha_i αmin21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi
其中, α i ⩾ 0 \alpha_i \geqslant 0 αi0 i = 1 , 2 , ⋯   , N i=1, 2, \cdots, N i=1,2,,N,并且满足 ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0
然后,对拉格朗日函数 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) α \alpha α 求极大值,这样就可以得到对偶问题的解。

那么求解得到 α \alpha α之后,该如何反求出 w ∗ , b ∗ w^*,b^* w,b呢?
根据KKT条件,有
∇ w L ( w ∗ , b ∗ , α ∗ ) = w ∗ − ∑ i = 1 N α i ∗ y i x i = 0 ∇ b L ( w ∗ , b ∗ , α ∗ ) = − ∑ i = 1 N α i ∗ y i = 0 α i ∗ ( y i ( w ∗ ⋅ x i + b ∗ ) − 1 ) = 0 , i = 1 , 2 , ⋯   , N y i ( w ∗ ⋅ x i + b ∗ ) − 1 ⩾ 0 , i = 1 , 2 , ⋯   , N α i ∗ ⩾ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} & \nabla_w L\left(w^*, b^*, \alpha^*\right)=w^*-\sum_{i=1}^N \alpha_i^* y_i x_i=0 \\ & \nabla_b L\left(w^*, b^*, \alpha^*\right)=-\sum_{i=1}^N \alpha_i^* y_i=0 \\ & \alpha_i^*\left(y_i\left(w^* \cdot x_i+b^*\right)-1\right)=0, \quad i=1,2, \cdots, N \\ & y_i\left(w^* \cdot x_i+b^*\right)-1 \geqslant 0, \quad i=1,2, \cdots, N \\ & \alpha_i^* \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} wL(w,b,α)=wi=1Nαiyixi=0bL(w,b,α)=i=1Nαiyi=0αi(yi(wxi+b)1)=0,i=1,2,,Nyi(wxi+b)10,i=1,2,,Nαi0,i=1,2,,N
由此得
w ∗ = ∑ i α i ∗ y i x i w^*=\sum_i \alpha_i^* y_i x_i w=iαiyixi
其中至少有一个 α j ∗ > 0 \alpha_j^*>0 αj>0 (用反证法, 假设 α ∗ = 0 \alpha^*=0 α=0, 由第一条KKT条件可知 w ∗ = 0 w^*=0 w=0, 而 w ∗ = 0 w^*=0 w=0不是原始最优化问题的解, 产生矛盾), 对此 j j j
y j ( w ∗ ⋅ x j + b ∗ ) − 1 = 0 y_j\left(w^* \cdot x_j+b^*\right)-1=0 yj(wxj+b)1=0
y j 2 = 1 y_j^2 = 1 yj2=1, y j ( w ∗ ⋅ x j + b ∗ ) − y j 2 = 0 y_j\left(w^* \cdot x_j+b^*\right)-y_j^2=0 yj(wxj+b)yj2=0进而得出 w ∗ ⋅ x j + b ∗ − y j = 0 w^* \cdot x_j+b^* - y_j = 0 wxj+byj=0
因此,在求解出 α ∗ \alpha^* α之后,可以得到决策平面的 w ∗ 和 b ∗ w^*和b^* wb
w ∗ = ∑ i α i ∗ y i x i b ∗ = y j − w ∗ ⋅ x j w^*=\sum_i \alpha_i^* y_i x_i\\ b^* = y_j - w^* \cdot x_j w=iαiyixib=yjwxj

算法:线性可分支持向量机学习算法

输入: 线性可分训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \cdots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}, 其中 x i ∈ X = R n , y i ∈ x_i \in \mathcal{X}=\mathbf{R}^n, y_i \in xiX=Rn,yi Y = { − 1 , + 1 } , i = 1 , 2 , ⋯   , N \mathcal{Y}=\{-1,+1\}, \quad i=1,2, \cdots, N Y={1,+1},i=1,2,,N;
输出: 分离超平面和分类决策函数.
(1)构造并求解约束最优化问题
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i  s.t.  ∑ i = 1 N α i y i = 0 α i ⩾ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} & \min _\alpha \quad \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^N \alpha_i y_i=0 \\ & \alpha_i \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=0αi0,i=1,2,,N

求得最优解 α ∗ = ( α 1 ∗ , α 2 ∗ , ⋯   , α N ∗ ) T \alpha^*=\left(\alpha_1^*, \alpha_2^*, \cdots, \alpha_N^*\right)^{\mathrm{T}} α=(α1,α2,,αN)T.
(2) 计算
w ∗ = ∑ i = 1 N α i ∗ y i x i w^*=\sum_{i=1}^N \alpha_i^* y_i x_i w=i=1Nαiyixi

并选择 α ∗ \alpha^* α 的一个正分量 α j ∗ > 0 \alpha_j^*>0 αj>0, 计算
b ∗ = y j − ∑ i = 1 N α i ∗ y i ( x i ⋅ x j ) b^*=y_j-\sum_{i=1}^N \alpha_i^* y_i\left(x_i \cdot x_j\right) b=yji=1Nαiyi(xixj)

(3) 求得分离超平面
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x+b^*=0 wx+b=0

分类决策函数:
f ( x ) = sign ⁡ ( w ∗ ⋅ x + b ∗ ) f(x)=\operatorname{sign}\left(w^* \cdot x+b^*\right) f(x)=sign(wx+b)

在线性可分支持向量机中, w ∗ w^* w b ∗ b^* b 只依赖于训练数据中对应于 α i ∗ > 0 \alpha_i^*>0 αi>0 的样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi), 而其他样本点对 w ∗ w^* w b ∗ b^* b 没有影响. 我们将训练数据中对应于 α i ∗ > 0 \alpha_i^*>0 αi>0 的实例点 x i ∈ R n x_i \in \mathbf{R}^n xiRn 称为支持向量.

线性可分支持向量机例子

在这里插入图片描述
带入
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i  s.t.  ∑ i = 1 N α i y i = 0 α i ⩾ 0 , i = 1 , 2 , ⋯   , N \begin{aligned} & \min _\alpha \quad \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^N \alpha_i y_i=0 \\ & \alpha_i \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=0αi0,i=1,2,,N
解 根据所给数据, 对偶问题是
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i = 1 2 ( 18 α 1 2 + 25 α 2 2 + 2 α 3 2 + 42 α 1 α 2 − 12 α 1 α 3 − 14 α 2 α 3 ) − α 1 − α 2 − α 3  s.t.  α 1 + α 2 − α 3 = 0 α i ⩾ 0 , i = 1 , 2 , 3 \begin{array}{ll} \min _\alpha & \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & =\frac{1}{2}\left(18 \alpha_1^2+25 \alpha_2^2+2 \alpha_3^2+42 \alpha_1 \alpha_2-12 \alpha_1 \alpha_3-14 \alpha_2 \alpha_3\right)-\alpha_1-\alpha_2-\alpha_3 \\ \text { s.t. } & \alpha_1+\alpha_2-\alpha_3=0 \\ & \alpha_i \geqslant 0, \quad i=1,2,3 \end{array} minα s.t. 21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi=21(18α12+25α22+2α32+42α1α212α1α314α2α3)α1α2α3α1+α2α3=0αi0,i=1,2,3

解这一最优化问题. 将 α 3 = α 1 + α 2 \alpha_3=\alpha_1+\alpha_2 α3=α1+α2 代入目标函数并记为
s ( α 1 , α 2 ) = 4 α 1 2 + 13 2 α 2 2 + 10 α 1 α 2 − 2 α 1 − 2 α 2 s\left(\alpha_1, \alpha_2\right)=4 \alpha_1^2+\frac{13}{2} \alpha_2^2+10 \alpha_1 \alpha_2-2 \alpha_1-2 \alpha_2 s(α1,α2)=4α12+213α22+10α1α22α12α2

α 1 , α 2 \alpha_1, \alpha_2 α1,α2 求偏导数并令其为 0 , 易知 s ( α 1 , α 2 ) s\left(\alpha_1, \alpha_2\right) s(α1,α2) 在点 ( 3 2 , − 1 ) T \left(\frac{3}{2},-1\right)^{\mathrm{T}} (23,1)T 取极值, 但该点不满足约束条件 α 2 ⩾ 0 \alpha_2 \geqslant 0 α20, 所以最小值应在边界上达到.
α 1 = 0 \alpha_1=0 α1=0 时, 最小值 s ( 0 , 2 13 ) = − 2 13 s\left(0, \frac{2}{13}\right)=-\frac{2}{13} s(0,132)=132; 当 α 2 = 0 \alpha_2=0 α2=0 时, 最小值 s ( 1 4 , 0 ) = − 1 4 s\left(\frac{1}{4}, 0\right)=-\frac{1}{4} s(41,0)=41. 于是 s ( α 1 , α 2 ) s\left(\alpha_1, \alpha_2\right) s(α1,α2) α 1 = 1 4 , α 2 = 0 \alpha_1=\frac{1}{4}, \alpha_2=0 α1=41,α2=0 达到最小, 此时 α 3 = α 1 + α 2 = 1 4 \alpha_3=\alpha_1+\alpha_2=\frac{1}{4} α3=α1+α2=41.

这样, α 1 ∗ = α 3 ∗ = 1 4 \alpha_1^*=\alpha_3^*=\frac{1}{4} α1=α3=41 对应的实例点 x 1 , x 3 x_1, x_3 x1,x3 是支持向量. 计算得
w 1 ∗ = w 2 ∗ = 1 2 b ∗ = − 2 \begin{gathered} w_1^*=w_2^*=\frac{1}{2} \\ b^*=-2 \end{gathered} w1=w2=21b=2

分离超平面为
1 2 x ( 1 ) + 1 2 x ( 2 ) − 2 = 0 \frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}-2=0 21x(1)+21x(2)2=0

分类决策函数为
f ( x ) = sign ⁡ ( 1 2 x ( 1 ) + 1 2 x ( 2 ) − 2 ) f(x)=\operatorname{sign}\left(\frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}-2\right) f(x)=sign(21x(1)+21x(2)2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339773.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

你好!Apache Seata

北京时间 2023 年 10 月 29 日&#xff0c;分布式事务开源项目 Seata 正式通过 Apache 基金会的投票决议&#xff0c;以全票通过的优秀表现正式成为 Apache 孵化器项目&#xff01; 根据 Apache 基金会邮件列表显示&#xff0c;在包含 13 个约束性投票 (binding votes) 和 6 个…

[MySQL] MySQL 高级(进阶) SQL 语句

一、高效查询方式 1.1 指定指字段进行查看 事先准备好两张表 select 字段1&#xff0c;字段2 from 表名; 1.2 对字段进行去重查看 SELECT DISTINCT "字段" FROM "表名"; 1.3 where条件查询 SELECT "字段" FROM 表名" WHERE "条件…

工具系列:TimeGPT_(4)预测区间数据

文章目录 预测区间历史预测 预测区间 预测区间提供了对预测值的不确定性的度量。在时间序列预测中&#xff0c;预测区间根据您设置的置信水平或不确定性&#xff0c;给出了一个估计的范围&#xff0c;未来观测值将在其中。这种不确定性水平对于做出明智决策、风险评估和规划至…

牛客网SQL训练4—SQL进阶挑战

文章目录 一、增删改操作1. 插入记录2. 更新记录3. 删除记录 二、表与索引操作1. 表的创建、修改与删除2. 索引的创建、删除 三、聚合分组查询1. 聚合函数2. 分组查询 四、多表查询1. 嵌套子查询2. 合并查询3. 连接查询 五、窗口函数1. 专用窗口函数2. 聚合窗口函数 六、其他常…

国产芯片ACL16_S 系列 ,低成本物联网安全,可应用物联网认证、 SIM、防抄板和设备认证等产品上

ACL16_S 芯片是针对物联网认证、 SIM、防抄板和设备认证需求推出的高安全芯片。芯片采用 32 位 ARMCortex™-M0 系列内核&#xff0c;片内集成多种安全密码模块&#xff0c;包括 RSA/ECC DES/TDES、 SHA-1/-256、 AES-128/-192/-256 等国际安全算法&#xff0c;支持真随机数发…

检索增强生成(RAG)旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。

检索增强生成&#xff08;RAG&#xff09;旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。 据 Arxiv 页面显示&#xff0c;同济大学近日联手复旦大学研究团队&#xff0c;提出了一种名为“检索增强生成&#xff08;RAG&#xff09;”的方法&#xff0c;旨在解决大模…

基于ssm流浪动物救助及领养管理系统

** &#x1f345;点赞收藏关注 → 私信领取本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345;** 项目介绍 随着信息化时代…

多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测

多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现SSA-GRU麻雀算法优化门控循环单元多变量时间序列预…

HTML+CSS制作动漫绿巨人

🎀效果展示 🎀代码展示 <!DOCTYPE html> <html lang="en" > <head>

NAS上使用Docker搭建Wiki.js构建云知识库

文章目录 NAS上使用Docker搭建Wiki.js、PostgreSQL和Nginx云知识库前置条件步骤1&#xff1a;获取wikijs的镜像步骤2&#xff1a;配置容器参数2.1 端口设置2.2 挂载设置2.3 环境变量设置&#xff08;配置数据库&#xff09; 步骤3. 启动界面3.1 切换语言3.2 GIT 配置3.3 用户和…

20231228在Firefly的AIO-3399J开发板的Android11的Firefly的AIO-3399J开发板的DTS配置单前置摄像头ov13850

20231228在Firefly的AIO-3399J开发板的Android11的Firefly的AIO-3399J开发板的DTS配置单前置摄像头ov13850 2023/12/28 12:30 开发板&#xff1a;Firefly的AIO-3399J【RK3399】 SDK&#xff1a;rk3399-android-11-r20211216.tar.xz【Android11】 Android11.0.tar.bz2.aa【ToyBr…

【ARMv8M Cortex-M33 系列 2.3 -- SEGGER JFlash 烧写命令介绍】

文章目录 SEGGER JFlash 烧写命令介绍JFlash 配置文件 固件烧写地址介绍确定烧写地址 SEGGER JFlash 烧写命令介绍 本文以介绍烧写 Renesas RA4M2 为例&#xff0c;对 JFlash 进行简单介绍。它是 ARM Cortex-M33 微控制器的型号之一。烧写前你需要先确保你有正确的 .hex 或 .b…

前缀和——OJ题(二)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、和为 k 的子数组1、题目讲解2、思路讲解3、代码实现 二、和可被 K 整除的⼦数组1、题目讲…

【辐射场】3D Gaussian Splatting

三维高斯…喷喷 \, 3D Gaussian Splatting&#xff0c;下文简称3DGS&#xff0c;是好一段时间以来在三维内容创作和三维重建领域比较有热度的一项技术。 它属于基于图像的三维重建方法&#xff0c;意思就是你对现实物体或者场景拍照片&#xff0c;就能给你训练成一个场景模型&a…

ASP.Net实现新闻添加查询(三层架构,含照片)

目录 演示功能&#xff1a; 点击启动生成页面 点击搜索模糊查询 点击添加跳转新界面 ​编辑 点击Button添加 步骤&#xff1a; 1、建文件 ​编辑 2、添加引用关系 3、根据数据库中的列写Models下的XueshengModels类 4、DAL下的DBHelper&#xff08;对数据库进行操作…

基于 AForge.Net 框架的扑克牌计算机视觉识别

© Conmajia 2012, Nazmi Altun 2011 Init. 24 May 2012 SN: 125.1 本文为翻译文章&#xff0c;已获原作者 Nazmi Altun 授权。 下载资源&#xff1a; 源代码&#xff08;148.6 KB&#xff09;、Demo&#xff08;3.1 MB&#xff09; 简介 &#xff08;图片上的字&#xf…

为什么要运营海外社媒?海外云手机能发挥什么作用?

基于海外社媒在全球范围内拥有的大量流量&#xff0c;海外社媒运营成为了品牌推广、内容创作和用户互动的重要途径。本文将探讨海外社媒运营的重要性&#xff0c;并介绍海外云手机在这一过程中的卓越帮助。 海外社媒运营的重要性 首先&#xff0c;海外社媒运营有助于企业扩大品…

OpenAI 2024年展望:Sam Altman愿望清单的深度解析

引言 Sam Altman 2023年11月22日 重回OpenAI 任CEO。 Sam Altman 2023年12月24日 发布新年需求统计。 OpenAI是一个美国人工智能研究实验室&#xff0c;由非营利组织OpenAI Inc&#xff0c;和其营利组织子公司OpenAI LP所组成。OpenAI 进行 AI 研究的目的是促进和发展友好的人…

Spring Boot程序输出远程访问IP

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《SpringBoot开发》。&#x1f3af;&#x1f3af;…

HarmonyOS4.0系统性深入开发07创建一个ArkTS卡片

创建一个ArkTS卡片 在已有的应用工程中&#xff0c;创建ArkTS卡片&#xff0c;具体操作方式如下。 创建卡片。 根据实际业务场景&#xff0c;选择一个卡片模板。 在选择卡片的开发语言类型&#xff08;Language&#xff09;时&#xff0c;选择ArkTS选项&#xff0c;然后单…