检索增强生成(RAG)旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。
据 Arxiv 页面显示,同济大学近日联手复旦大学研究团队,提出了一种名为“检索增强生成(RAG)”的方法,旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。
论文显示,RAG在回答问题之前,会从外部知识库中检索相关信息,以提高答案的准确性,减少模型的幻觉,尤其适用于知识密集型任务。通过引用来源,用户可以验证答案的准确性,增加对模型输出的信任。
同时,RAG也促进了知识的更新和特定领域知识的引入。
检索增强生成(RAG)旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。
据 Arxiv 页面显示,同济大学近日联手复旦大学研究团队,提出了一种名为“检索增强生成(RAG)”的方法,旨在解决大模型幻觉、知识更新缓慢和答案透明度不足等问题。
论文显示,RAG在回答问题之前,会从外部知识库中检索相关信息,以提高答案的准确性,减少模型的幻觉,尤其适用于知识密集型任务。通过引用来源,用户可以验证答案的准确性,增加对模型输出的信任。
同时,RAG也促进了知识的更新和特定领域知识的引入。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339765.html
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!