【辐射场】3D Gaussian Splatting

news2025/1/20 18:38:35

三维高斯…喷喷

  \,   3D Gaussian Splatting,下文简称3DGS,是好一段时间以来在三维内容创作和三维重建领域比较有热度的一项技术。
它属于基于图像的三维重建方法,意思就是你对现实物体或者场景拍照片,就能给你训练成一个场景模型,能够被渲染出来给你看。
  它产生的模型可以作为三维内容创作的资产,什么意思呢,就是你可以搞一点视频或者很多图片作为输入,丢进什么应用等一会就变成一个3DGS,最后过几个插件就可以拖进大家最爱的blender/ue/unity里面用啦。
看起来是不是很美好?
  所谓的辐射场方法意思就是它们会存一些辐射度(radiance),类似于存储你位于某个地点、从某个视角、看场景里面的各个点发出的光的属性。这些方法一般基于体渲染、光线步进(Ray Marching)或者光线追踪(Ray Tracing),得到的重建结果模型自然属于一种独特的格式。虽然说还是比较方便兼容真实感渲染(PBR)的,就像houdini里面的SDF、VDB,都是根据体积组织的……不过万一如果想要变成有mesh那类表面建模的:那就还需要相当多的额外工作(Sugar、此外DreamGaussian也有一个小工具)
  最新的一些工作例如4DGS、4K4D甚至可以把视频(连续图像序列)重建成动态场景,就是对于动态场景的修改暂时可能比较尴尬。GS的小物体比较有优势,静态大场景看起来比较捉急,但是4D的工作同向对比目前看起来会比较好看。
  自然还有GS进SLAM的工作(GS-SLAM、SplaTAM),就不多嘴了。


先质疑再质疑

破洞
  俗话说,demo都是骗人的 。上图只是相对第一张图稍微往右上转了一点点,把焦点从桌子转到背景物件,有点难看吧。当然如果增加训练步数和图片数量能好看一点,不过缺陷确实是存在的。随便抓一个3DGS的演示基本都能看到这个问题,只要你不是站在被训练到的视角,那么你往背景看大概率就会出现如上图所示的破洞。然而你拍场景的时候会对着墙角的杂草全方位覆盖吗?
  如果你往被遮盖的地方、或者图上这种地方跑近了,你就会看到糊糊的Gaussian Splats。
  如果你想要从3DGS得到一个完整的、有精细材质的、甚至能估计碰撞体积的物体,就需要首先保证那个物体不能动、其次从各个角度多拍点图(如果你有三十万相机能够同时从各个角度拍完也行吧)。对于大场景来说,这种要求就有点严苛了,结果就是稍微远一点、几米开外的地方都不能细看。
  那么为啥会破洞呢?我们观察这个例子
在这里插入图片描述
在这里插入图片描述
  上面是3DGS、下面是点云。这两幅图照样是在角落,那个桌子附近点特别多的。呃,当然点云初始化来自于NeRF360V2 dataset,其实跟他一开始大差不差,这也是我们亲爱的3DGS原论文里面指出故意的。
  remain primitives

你可以简单地把3DGS理解成一种基于好多个点(点云)的结构,每个点在渲染的时候会变成一个从各个角度看可以有不同光泽的一坨球面高斯splat,形似椭球,上面的颜色是一个椭球面上的关于极坐标角度的函数,那不管是分段线性插值还是怎么的总要想个办法近似吧,GS就是用球谐函数(图是形似原子轨道,实际上还是球面上的函数,极坐标半径是指那个角度上球谐函数值大小)作为基函数,组合出一个比较丰富的函数,拉一拉变成椭圆。虽然在训练和优化的过程中这些椭圆的位置、尺寸朝向和圆润程度、不同方向上辐射折射反射出来的颜色等等(多元正态分布的均值、协方差、球面高斯的球谐系数)可以有一定变化,但是假如一开始点没安放好、分布相当不均匀,那就会四处破大洞了。
  呃呃。虽然破洞,还是有不少优点。
  表现上来说就和一般NeRF类似,着色还是相当真实的(可以补光,不好把场景本来有的光去掉(relighting));另外因为是把信息存在点里面、而不是像NeRF那样跟你的视线强相关,总的来说多个3DGS可以方便地合并到一起。
  从效率来说、一个是炼起来不算龟速,另一个是渲染快。上面那个小花园拿A5k跑大概一小时能有好几万steps(参考:论文里面拿来抢SOTA用的是5w/7w/30w iters);渲染的时候能做到实时的,20系以上跑起来可以有一百到几百fps。
  顺带一提一个3DGS一般是1GB起步。这方面也有能缩到1/15的工作。


咋办啊?

  \,   3DGS的结果有时候看起来不理想,主要是那些位置本身并没有充分的信息。哪怕有,注意到直接对比渲染结果和ground truth图像的优化目标函数又不能很好地反应三维重建的质量和真实度,结果就是你从训练的时候相机的位置和姿态看过去它能拟合,结果挪动一下看见面前的splats马上偏离位置四处漏风。考虑到真实世界各种经验和物理先验,例如局部一般会有比较重复自相似的样式等等,或许能有帮助。
  更加NeRF的Plenoctrees→Plenoxels几乎可以说是3DGS的前身,之前许多工作其实也是强相关的,可以作为参考(就像Mip-splatting干的那样)。
  NeRF的时候一种思路是提出新的有关不确定性的量度(Bayes’ Rays),一种思路是利用真实世界信息来补全那些不确定的部分(Nerfbusters)。比如利用Segment Anything、利用3D Diffusion、配合深度等等(SparseGS)……反正能保证渲染实时就挺好的。
  另外GS虽然又独创又高效、不过在诸多NeRF类方法之中,其他方法在精度方面也还是很有价值的,而且有相当一部分还能实现实时渲染。


能讲讲原理吗?

, , ,  讲完啦!想看定义看公式听名词还是看代码啊?
  3DGS整个过程主要包括从运动结构恢复(SfM)得到点云、通过渲染得到loss再反向传播训练其各点上球面高斯各项参数(它的位置都是比较清楚的,方便sort)。因为splat除了是各向异性之外基本可以类比一堆堆物理世界的粒子模型、有辐照度和各向异性颜色、有一定的不透明度以及一定的透光度,多个splat就要α-blending。训练的时候要把渲染结果跟ground truth比出loss,因为渲染过程是视野/视锥范围内部分点云各个点上根据存的系数得到3dsplat再被rasterize(三维正态分布沿线积分得到二维,alpha-blending到你的screen uv上光栅化),就能顺着或者逆着渲染过程变成图像,这样就有forward跟backward,顺便还可以做点小并行。得益于它的splats可以排序,backward的时候alpha blending的逆过程是比较直接可行的。光栅化时还希望在经过透视变换的时候splat不会被扭曲变形,要把变换矩阵近似一下。
  3DGS的split clone prune有点被逼的,不过既然约等于一个个椭球球那也确实有一点难搞,不像NeRF那样隐式了根本操心不了这些问题。4DGS里面专门关于位置做了点工作,如果能够减轻对可能不太靠谱的SfM的依赖或许会更好一点,像COLMAP-free 3DGS等等。PAPR里面也指出SfM不给力的情况下,对于clone的情况因为梯度不对头,有的点如果一开始就离splat远,最后也几乎不可能被照顾到。此外,split clone的方式面对纹理上的精细细节也比较乏力。
  此外,输入(多个)连续图像序列,一开始就重建出动态场景表示,有需要再截取某一帧或许不失为一种选择,也有机会利用其比较充分的信息让那一帧的状态更确定、说不定还能做一些物理模拟等等工作对比loss。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1339754.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ASP.Net实现新闻添加查询(三层架构,含照片)

目录 演示功能: 点击启动生成页面 点击搜索模糊查询 点击添加跳转新界面 ​编辑 点击Button添加 步骤: 1、建文件 ​编辑 2、添加引用关系 3、根据数据库中的列写Models下的XueshengModels类 4、DAL下的DBHelper(对数据库进行操作…

基于 AForge.Net 框架的扑克牌计算机视觉识别

© Conmajia 2012, Nazmi Altun 2011 Init. 24 May 2012 SN: 125.1 本文为翻译文章,已获原作者 Nazmi Altun 授权。 下载资源: 源代码(148.6 KB)、Demo(3.1 MB) 简介 (图片上的字&#xf…

为什么要运营海外社媒?海外云手机能发挥什么作用?

基于海外社媒在全球范围内拥有的大量流量,海外社媒运营成为了品牌推广、内容创作和用户互动的重要途径。本文将探讨海外社媒运营的重要性,并介绍海外云手机在这一过程中的卓越帮助。 海外社媒运营的重要性 首先,海外社媒运营有助于企业扩大品…

OpenAI 2024年展望:Sam Altman愿望清单的深度解析

引言 Sam Altman 2023年11月22日 重回OpenAI 任CEO。 Sam Altman 2023年12月24日 发布新年需求统计。 OpenAI是一个美国人工智能研究实验室,由非营利组织OpenAI Inc,和其营利组织子公司OpenAI LP所组成。OpenAI 进行 AI 研究的目的是促进和发展友好的人…

Spring Boot程序输出远程访问IP

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《SpringBoot开发》。🎯🎯…

HarmonyOS4.0系统性深入开发07创建一个ArkTS卡片

创建一个ArkTS卡片 在已有的应用工程中,创建ArkTS卡片,具体操作方式如下。 创建卡片。 根据实际业务场景,选择一个卡片模板。 在选择卡片的开发语言类型(Language)时,选择ArkTS选项,然后单…

动态规划 多源路径 字典树 LeetCode2977:转换字符串的最小成本

涉及知识点 动态规划 多源最短路径 字典树 题目 给你两个下标从 0 开始的字符串 source 和 target ,它们的长度均为 n 并且由 小写 英文字母组成。 另给你两个下标从 0 开始的字符串数组 original 和 changed ,以及一个整数数组 cost ,其中…

FreeRTOS基础知识(一)任务调度

1任务调度器简介(熟悉) 1.1抢占式调度 特点: 1、 高优先级抢占低优先级 2、高优先级任务不停止,低优先级无法运行 3、被抢占的任务会进入就绪态 举例 阐述一下啊Task1 2 3 任务优先级分别为1 2 3 (freertos中数值越…

C1189#error: WinSock.h has already been included解决方案

最近在做项目移植过程中遇到这个报错&#xff0c;解决了半天。简单记录下解决方案&#xff0c;以供给大家提供一个思路。 原因&#xff1a; 在工程中使用了Boot库之后&#xff0c;使用了socket、tcp相关的头文件&#xff0c;在其他地方还是包括了头文件<windows.h>&…

leetcode的vscode插件无法登陆问题及解决办法

最近打算使用leetcode的vscode提升一下写代码的体验以及尝试debug。但是发现死活登录不上去&#xff0c;无论是账号登录还是cookies登录&#xff0c;尝试百遍都不行&#xff0c;在查阅资料之后&#xff0c;找到了解决办法。 文章目录 1.账号密码正确&#xff0c;插件无法登陆&a…

16-网络安全框架及模型-BiBa完整性模型

目录 BiBa完整性模型 1 背景概述 2 模型原理 3 主要特性 4 优势和局限性 5 应用场景 BiBa完整性模型 1 背景概述 Biba完整性模型是用于保护数据完整性的模型&#xff0c;它的主要目标是确保数据的准确性和一致性&#xff0c;防止未授权的修改和破坏。在这个模型中&#…

Apache Jackrabbit漏洞浅析

Apache Jackrabbit是一个Java开源内容存储库&#xff0c;1.0.0 < 版本 < 2.20.11、2.21.0 < 版本 < 2.21.18存在RMI功能导致的远程代码执行漏洞。 补丁分析 对比补丁前后两个版本&#xff08;https://github.com/apache/jackrabbit/compare/jackrabbit-2.20.10..…

LSTM Siamese neural network

本文中的代码在Github仓库或Gitee仓库中可找到。 Hi, 你好。我是茶桁。 大家是否还记得&#xff0c;在「核心基础」课程中&#xff0c;我们讲过CNN以及LSTM。 卷积神经网络&#xff08;CNN&#xff09;已经在计算机视觉处理中得到广泛应用&#xff0c;不过&#xff0c;2017年…

事务管理解析:掌握Spring事务的必备技能!

AOP事务管理 1.1 Spring事务简介1.1.1 相关概念介绍1.1.2 转账案例-需求分析1.1.3 转账案例-环境搭建步骤1:准备数据库表步骤2:创建项目导入jar包步骤3:根据表创建模型类步骤4:创建Dao接口步骤5:创建Service接口和实现类步骤6:添加jdbc.properties文件步骤7:创建JdbcConfig配置…

axios配置请求头content-type 和 get/post请求方式

axios配置请求头content-type https://blog.csdn.net/wojiushiwo945you/article/details/107653962 axios 是Ajax的一个插件&#xff0c;axios虽然是一个插件&#xff0c;但是我们不需要通过Vue.use(axios)来使用&#xff0c;下载完成后&#xff0c;只需在项目中引入即可。(一…

用Html和js和layui写一个简单猜拳小游戏

简单学习技术&#xff0c;写了一个小游戏&#xff0c;用html和js写一个简单的小游戏。玩家点击按钮出拳&#xff0c;玩家胜利结果显示绿色&#xff0c;玩家输了结果显示红色&#xff0c;平局结果显示蓝色。 页面效果&#xff1a; 代码&#xff1a; <!DOCTYPE html> <…

【C语言】数组

㊙️小明博客主页&#xff1a;➡️ 敲键盘的小明 ㊙️ ✅关注小明了解更多知识☝️ 文章目录 前言一、什么是数组&#xff1f;二、一维数组的创建和初始化2.1 一维数组的创建2.2 一维数组的初始化2.3 一维数组的使用3.3 一维数组的存储 三、二维数组的创建和初始化3.1 二维数组…

深度学习 | DRNN、BRNN、LSTM、GRU

1、深度循环神经网络 1.1、基本思想 能捕捉数据中更复杂模式并更好地处理长期依赖关系。 深度分层模型比浅层模型更有效率。 Deep RNN比传统RNN表征能力更强。 那么该如何引入深层结构呢&#xff1f; 传统的RNN在每个时间步的迭代都可以分为三个部分&#xff1a; 1.2、三种深层…

虚函数的讲解

文章目录 虚函数的声明与定义代码演示基类Person派生类Man派生类Woman 测试代码动态绑定静态绑定访问私有虚函数总结一下通过成员函数指针调用函数的方式 虚函数的声明与定义 虚函数存在于C的类、结构体等中&#xff0c;不能存在于全局函数中&#xff0c;只能作为成员函数存在…

❀My小学习之排序算法❀

目录 排序算法&#xff08;Sorting algorithm&#xff09;:) 一、定义 二、分类 三、评价标准 排序算法&#xff08;Sorting algorithm&#xff09;:) 一、定义 所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的…