从 Linux Crontab 到 K8s CronJob,定时任务正在经历怎样的变革

news2024/11/20 14:44:33

作者:黄晓萌(学仁)

背景

Job 表示短周期的作业,定时 Job 表示按照预定的时间运行Job,或者按照某一频率周期性的运行 Job。比如:

image.png

许多传统企业使用 Linux 自带的 crontab 来做定时任务的方案,该方案非常简单,适合做主机上的运维工作,比如定时清理日志、周期性做健康检查。随着信息化时代的高速发展,业务变得越来越复杂,很多场景都需要定时任务,但是 crontab 方案存在高可用问题,不适合应用在业务应用上。

在云原生时代,K8s CronJob 设计了一套高可用的定时任务解决方案,保障了业务的稳定。但是把 K8s CronJob 应用在生产上,发现定时任务真的出问题的时候排查起来很麻烦,于是越来越多用户对定时任务的可观测有了更多的诉求,阿里云也推出了自己的云原生定时任务解决方案,可以托管原生 K8s CronJob,提供可报警、可观测、可运维等能力,帮助企业提效。

Linux Crontab 方案面临的问题

什么是 Crontab

Crontab 是 Linux 系统中的一个服务,用于创建、编辑和管理定时任务。通过 crontab 命令,用户可以设置系统在指定时间自动执行某个命令或脚本。

Crontab 命令的语法分为两部分,分别是时间表达式和命令。时间表达式如下:

# ┌───────────── 分钟 (0 - 59)
# │ ┌───────────── 小时 (0 - 23)
# │ │ ┌───────────── 月的某天 (1 - 31)
# │ │ │ ┌───────────── 月份 (1 - 12)
# │ │ │ │ ┌───────────── 周的某天 (0 - 6)(周日到周一;在某些系统上,7 也是星期日)
# │ │ │ │ │                          或者是 sun,mon,tue,web,thu,fri,sat
# │ │ │ │ │
# │ │ │ │ │
# * * * * *

命令常用来执行某个脚本,举个例子:

  • 每隔 5 分钟执行 hello.sh:*/5 * * * * sh /root/script/hello.sh
  • 每天早上 6 点半执行 world.py:  30 6 * * * python /root/script/world.py

Crontab 的工作原理

Crontab 由一个名为"Crond"的守护进程负责调度任务,当 Crond 启动的时候,就会从配置文件(路径在 /var/spool/cron 下)加载所有的定时任务。当执行 crontab 命令的时候,会动态的添加新的定时任务,并加入到配置文件中。Crontab 每次执行任务,都会产生执行记录,目录在 /var/log/cron 下。

图片

Crontab 的痛点问题

图片

使用 crontab 主要有如下痛点:

  • 无高可用: 为了保证业务幂等执行,需要在不同的机器配置不同的 crontab 任务。crontab 只能调度本机器上的定时任务,如果某一个机器挂了,那上面的定时任务也都不会执行了,有稳定性风险。
  • 无自动负载均衡: 不同的脚本放在不同的机器上,需要手动负载均衡,如果脚本比较多,运维代价很高。
  • 无权限隔离: 一般企业生产的机器只有运维才能登陆,但是开发要新增/修改脚本和定时任务,也需要登录到生产的机器上,没法做到权限隔离。

云原生 K8s CronJob 方案的优势

什么是 K8s CronJob

Job 是 K8s 中的一种资源,用来处理短周期的 Pod,相当于一次性任务,跑完就会把 Pod 销毁,不会一直占用资源,可以节省成本,提高资源利用率。CronJob 也是 K8s 中的资源,用来周期性的重复调度 Job。

下面是一个 CronJob 的示例,每隔 5 分钟调度脚本 edas/schedulerx-job.sh:

apiVersion: batch/v1
kind: CronJob
metadata:
  name: hello
spec:
  schedule: "*/5 * * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: hello
            image: busybox:1.28
            imagePullPolicy: IfNotPresent
            command: ["/bin/sh", "/root/script/edas/schedulerx-job.sh"]
          restartPolicy: OnFailure

K8s CronJob 的优势

图片

与单纯使用 Crontab 相比,使用 K8s CronJob 带来了如下优势:

  • 高可用: K8s 会保证集群的高可用,如集群中有节点挂了,都不会影响定时任务的调度。
  • 自动负载均衡: Pod 默认选择负载最低的 node 执行,支持 NodeSelector 和亲和性等多种负载均衡策略。
  • 权限隔离: 只有运维可以登录 master 和 worker 节点,开发通过管控或者 ApiServer 来创建和更新 CronJob,并且支持命名空间隔离,RBAC 权限管理。

K8s CronJob 的进阶能力

Linux Crontab 只能周期性调度本机的脚本,功能比较简单,K8s 定时任务支持更多的进阶能力:

  • 在 Job 资源上
    • 并行执行: 通常一个 Job 只启动一个 Pod,可以通过配置 spec.completions 参数,来决定一个 Job 要执行多少个 Pod。
    • 索引任务: 并行执行通常需要和索引任务结合使用,当配置 .spec.completionMode=“Indexed” 时,这个 Job 就是一个索引任务,每个 Pod 会获得一个不同的索引值,介于 0 和 .spec.completions-1 之间,这样就可以让不同的 Pod 根据索引值处理不同的数据。
    • 并行限流: 并行执行的时候,通常还需要做限流,可以配置 .spec.parallelism 参数,来控制一个 Job 最多同时跑多少个 Pod。
    • 失败自动重试: 可以配置 .spec.backoffLimit,来设置 Job 失败重试次数。
    • 超时: 可以配置 .spec.activeDeadlineSeconds,来设置 Job 超时的时间。
  • 在 CronJob 资源上
    • 时区: 可以通过设置 .spec.timeZone 参数,决定 CronJob 按照哪个时区的时间来调度任务。
    • 并发性规则: 当一个 Job 还在执行,下次调度时间到了,是否执行新的 Job,可以通过 .spec.concurrencyPolicy 来配置,取值为 Allow/Forbid/Replace。
    • 任务历史限制: 可以通过配置 .spec.successfulJobsHistoryLimit 和 .spec.failedJobsHistoryLimit 来决定保留多少成功和失败的 Job。

阿里云 K8s CronJob 提效新模式

阿里云分布式任务调度 SchedulerX 和云原生结合,推出可视化 K8s Job 解决方案。针对脚本使用者,屏蔽了容器服务的细节,不用构建镜像就可以让不熟悉容器的同学(比如运维和运营同学)玩转 K8s Job,受益容器服务带来的降本增效福利。针对容器使用者,SchedulerX 不但完全兼容原生的 K8s Job,还能支持历史执行记录、日志服务、重跑任务、报警监控、可视化任务编排等能力,为企业级应用保驾护航。

快速迁移 Crontab 脚本任务

通过上面的章节,我们知道 Linux Crontab 存在许多问题,迁移到 K8s CronJob 可以带来很多好处,但是要从 crontab 迁移到 K8s CronJob 还是挺麻烦的,这里以通过 python 脚本访问数据库为例,来对比两种方案的差异。

K8s 原生解决方案
  1. 将 crontab 脚本拷贝到本地,取名为 edas/schedulerx-job.py
#!/usr/bin/python
# -*- coding: UTF-8 -*-

import MySQLdb

# 打开数据库连接
db = MySQLdb.connect("localhost", "testuser", "test123", "TESTDB", charset='utf8' )

# 使用cursor()方法获取操作游标 
cursor = db.cursor()

# SQL 查询语句
sql = "SELECT * FROM EMPLOYEE \
WHERE INCOME > %s" % (1000)
try:
    # 执行SQL语句
    cursor.execute(sql)
    # 获取所有记录列表
    results = cursor.fetchall()
    for row in results:
        fname = row[0]
        lname = row[1]
        age = row[2]
        sex = row[3]
        income = row[4]
        # 打印结果
        print "fname=%s,lname=%s,age=%s,sex=%s,income=%s" % \
        (fname, lname, age, sex, income )
        except:
    print "Error: unable to fetch data"

# 关闭数据库连接
db.close()
  1. 在本地编写 Dockerfile
FROM python:3

WORKDIR /usr/src/app

COPY requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt

COPY edas/schedulerx-job.py /root/edas/schedulerx-job.py

CMD [ "python", "/root/edas/schedulerx-job.py" ]
  1. 制作 docker 镜像,推到镜像仓库中
docker build -t registry.cn-beijing.aliyuncs.com/demo/edas/schedulerx-job:1.0.0 .
docker push registry.cn-beijing.aliyuncs.com/demo/edas/schedulerx-job:1.0.0
  1. 编写 K8s CronJob 的 YAML 文件,image 选择第 3 步制作的镜像,command 的命令为执行脚本
apiVersion: batch/v1
kind: CronJob
metadata:
  name: demo-python
spec:
  schedule: "*/5 * * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: demo-python
            image: registry.cn-beijing.aliyuncs.com/demo/edas/schedulerx-job:1.0.0
            imagePullPolicy: IfNotPresent
            command: ["python",  "/root/edas/schedulerx-job.py"]
          restartPolicy: OnFailure

我们看到把一个 contab 迁移到 K8s CronJob,就需要这么多步骤,如果之后要修改脚本,还需要重新构建镜像和重新发布 K8s CronJob,这里先不计算开始之前的学习成本,单纯从使用角度来看,有着较高的上手成本。

阿里云解决方案

阿里任务调度 SchedulerX 结合云原生技术,提出了一套可视化的脚本任务解决方案,通过任务调度系统来管理脚本,直接在线编写脚本,不需要构建镜像,就可以将脚本以 Pod 的方式在用户的 K8s 集群当中运行起来,使用非常方便,如下图:

图片

  1. 在你的 K8s 集群中部署一个 schedulerx-deployment(只需要装一次),注册到 SchedulerX 上来,让 SchedulerX 可以调度你的 K8s 上的 Pod

  2. 在 SchedulerX 任务管理新建一个 K8s 任务,资源类型选择 Python-Script(当前支持 shell/python/php/nodejs 四种脚本类型),把脚本拷贝进去,然后配置定时表达式

图片

这里的镜像只需要构建一个基础镜像即可,如果脚本内容有修改,只要依赖的库没有改变,就不需要重新构建镜像。

  1. 等调度时间到了,或者通过控制台手动运行一次,可以在 K8s 集群中看到以 Pod 的方式运行脚本,Pod 名称为 schedulerx-python-{JobId}

image.png

下面通过一个表格更方便的看到两个方案的差异:

K8s原生解决方案阿里云解决方案
脚本管理不支持支持,通过SchedulerX控制台可以进行脚本管理
开发效率慢,每次修改脚本都需要重新构建镜像快,在线修改脚本,不需要构建镜像,自动部署
学习成本高,需要学习Docker和K8s等容器相关知识低,不需要容器相关知识,会写脚本就行

增强原生 K8s CronJob

SchedulerX 不但能够快速开发 K8s 脚本任务,屏蔽容器服务的细节,给不熟悉容器服务的同学带来福音,同时还能托管原生 K8s Job/CronJob,增强可运维可观测等能力。

K8s 原生解决方案

以官方提供的 CronJob 为例。

  1. 编写 hello.yaml
apiVersion: batch/v1
kind: CronJob
metadata:
  name: hello
spec:
  schedule: "* * * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: hello
            image: perl:5.34
            command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(100)"]
          restartPolicy: OnFailure
  1. 在 K8s 集群中运行该 CronJob,查看 pod 历史记录和日志

图片

发现原生的 CronJob 只能查看最近 3 条执行记录和日志,想要查看更久之前的记录无法看到,这在业务出现问题想排查的时候就变得尤为困难。虽然可以通过配置 .spec.successfulJobsHistoryLimit 和 .spec.failedJobsHistoryLimit 来保留更多的 Pod 历史记录,但是保留更多的 Pod,就会更加占用 K8s 集群的资源,因为 Job 已经跑完了,只是为了查看日志保留更多历史记录,成本太高了。

阿里云解决方案

阿里任务调度 SchedulerX 可以托管原生 K8s Job/CronJob,方便移植,使用 SchedulerX 托管,可以具有更强的可运维可观测能力,比如任务重跑、日志服务、报警监控等。

  1. 新建 K8s 任务,任务类型选择 K8s,资源类型选择 Job-YAML,打印 bpi(-1)

图片

  1. 通过工具来生成 cron 表达式,比如每小时第 8 分钟跑

图片

  1. 调度时间还没到,也可以手动点击“运行一次”来进行测试

图片

  1. 在 K8s 集群中可以看到 Job 和 Pod 启动成功,每个任务只会保留最近一次调度的 Pod,减少 K8s 集群的资源占用

图片

  1. 在 SchedulerX 控制台也可以看到历史执行记录,发现运行失败

image.png

  1. 在 SchedulerX 控制台可以看到任务运行日志,查看失败原因

图片

  1. 在线修改任务的 YAML,打印 bpi(100)

图片

  1. 不需要删除 Job,通过控制台来重跑任务

image.png

  1. 任务重跑成功,且能看到新的日志

图片

图片

下面通过一个表格来对比两个方案的差异:

K8s原生解决方案阿里云解决方案
手动运行一次不支持支持
手动重跑任务不支持支持
Cron定时调度支持,YAML配置支持,兼容开源CronJob的YAML,也支持通过控制台动态配置
K8s资源占用高,保留最近3次Pod低,仅保留最近1次Pod
历史记录最近3次最近300次
日志最近3次最近2周,支持搜索
报警不支持支持,企业级报警通知服务
操作记录不支持支持

总结

在云原生时代,使用 K8s CronJob 在很多场景下可以作为 Linux Crontab 替换的解决方案,解决了crontab的一系列痛点问题。通过阿里云 SchedulerX 来调度你的 K8s CronJob,能够降低学习成本,加快开发效率,让你的任务失败可报警,出问题可排查, 打造云原生可观测体系下的定时任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1337719.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“巴渝工匠杯”2022年重庆市职业院校技能大赛(高职组)云计算样题

“巴渝工匠杯”2022年重庆市职业院校技能大赛(高职组)云计算样题 需要软件包环境可私信博主 【赛程名称】云计算赛项第一场次-私有云 某企业拟使用OpenStack搭建一个企业云平台,以实现资源池化弹性管理、企业应用集中管理、统一安全认证和授…

PostGIS学习教程十五:几何图形的有效性

PostGIS学习教程十五:几何图形的有效性 在90%的情况下,“为什么我的查询给了我一个’TopologyException’错误"的问题的答案是"一个或多个输入的几何图形是无效的”,这就引出了这样一个问题:几何图形"无效"是什么意思&a…

从计算机内存结构到iOS

一、冯.诺伊曼结构 当前计算机都是冯.诺伊曼结构(Von Neumann architecture),是指存储器存放程序的指令以及数据,在程序运行时根据需要提供给CPU使用。 冯.诺伊曼瓶颈 在目前的科技水平之下,CPU与存储器之间的读写速…

【C Primer Plus第六版 学习笔记】第十四章 结构和其他数据形式

有基础,进阶用,个人查漏补缺 建立结构声明:描述该对象由什么组成,即结构布局 格式: 关键字 标记(可选){结构 }; 举例: struct book{char title[2];char author[4];float …

Xcode 编译速度慢是什么原因?如何提高编译速度?

作为一个开发者,我们都希望能够高效地开发应用程序,而编译速度是影响开发效率的重要因素之一。然而,有时候我们会发现在使用 Xcode 进行开发时,译速度非常慢,这给我们带来了不少困扰。那么,为什么 Xcode 的…

分页合理化是什么?

一、前言 大家好!我是sum墨,一个一线的底层码农,平时喜欢研究和思考一些技术相关的问题并整理成文,限于本人水平,如果文章和代码有表述不当之处,还请不吝赐教。 只要是干过后台系统的同学应该都做过分页查…

神经网络介绍

目录 知识点介绍 知识点介绍 前馈神经网络:(前馈网络的数据只向一个方向传播) RNN循环神经网络,下图中多个 RNN 层都是“同一个层”,这一点与之前的神经网络是不一样的。

怎么下载landsat 8影像并在ArcGIS Pro中进行波段组合

Landsat 8(前身为Landsat数据连续性任务,或 LDCM)于2013年2月11日由 Atlas-V火箭从加利福尼亚州范登堡空军基地发射升空,这里为大家介绍一下该数据的下载的方法,希望能对你有所帮助。 注册账号 如果之前已经注册过的…

5、IDEA集成Git

IDEA集成Git 1. 配置Git忽略文件2. 定位Git程序3. 初始化本地库、添加暂存区、提交到本地库4. 切换版本5. 创建分支和切换分支6. 合并分支7. 解决冲突 1. 配置Git忽略文件 问题1:为什么要忽略他们? 与项目的实际功能无关,不参与服务器上部署…

学习笔记12——Spring的注解配置

学习笔记系列开头惯例发布一些寻亲消息 链接:https://baobeihuijia.com/bbhj/contents/3/192486.html SSM框架——注解配置(Component Autowired 加载SpringConfig) 注解开发(Component注解、config扫描 加载SpringConfig&a…

https密钥认证、上传镜像实验

一、第一台主机通过https密钥对认证 1、安装docker服务 (1)安装环境依赖包 yum -y install yum-utils device-mapper-persistent-data lvm2 (2)设置阿里云镜像源 yum-config-manager --add-repo http://mirrors.aliyun.com/do…

EB tresos 配置I2c - 实现与PF8200的读写操作

文章目录 前言一、EB工具链配置1、I2c模块1)新建模块2)配置General3)配置I2cChannel 2、Port模块1)配置SDA2)配置SCL 二、代码分析1、申明一个I2c配置结构体数组,用于I2c所有读操作。2、搭建读操作函数 三、…

GitLab 删除或移动项目

首先明说,删除后无法恢复 第一步:找到要删除的项目 第二步:进入目录后,左侧菜单,设置 >>> 通用,拉到最下面找到“高级”,点击右侧“展开” 第三步:点击“展开”后往下拉&a…

亚马逊云科技 re:Invent 2023 产品体验:亚马逊云科技产品应用实践 王炸产品 Amazon Q,你的 AI 助手

意料之中 2023年9月25日,亚马逊宣布与 Anthropic 正式展开战略合作,结合双方在更安全的生成式 AI 领域的先进技术和专业知识,加速 Anthropic 未来基础模型的开发,并将其广泛提供给亚马逊云科技的客户使用。 亚马逊云科技开发者社…

Python 实现Excel和CSV之间的相互转换

通过使用Python编程语言,编写脚本来自动化Excel和CSV之间的转换过程,可以批量处理大量文件,定期更新数据,并集成转换过程到自动化工作流程中。本文将介绍如何使用第三方库Spire.XLS for Python 实现: 使用Python将Exc…

ServletConfig对象.

是什么 ServletConfig是javax.servlet.包下的一个接口,ServletConfig它是Servlet的一个配置对象; ServletConfig是由tomcat容器创建,通过init方法传入给Servlet; ServletConfig对象如何获取? 在GenericServlet里面定义了&#x…

根据DCT特征训练CNN

记录一次改代码的挣扎经历: 看了几篇关于DCT频域的深度模型文献,尤其是21年FcaNet:基于DCT 的attention model,咱就是说想试试将我模型的输入改为分组的DCT系数,然后就开始下面的波折了。 第一次尝试&#xf…

【SpringCloud】-OpenFeign实战及源码解析、与Ribbon结合

一、背景介绍 二、正文 OpenFeign是什么? OpenFeign(简称Feign)是一个声明式的Web服务客户端,用于简化服务之间的HTTP通信。与Nacos和Ribbon等组件协同,以支持在微服务体系结构中方便地进行服务间的通信&#xff1b…

互联科技:全域托管云赋能百行百业的数字化转型

在这个数字经济时代,云计算技术为企业提供了更加高效的业务管理机会,百行百业加速上云。对比几种云网方案,目前公有云方案存在可控性低、数据暴露风险、个性化需求难以满足、服务受限等问题;私有云方案存在建设成本高、建设周期长…

TCP服务器的演变过程:IO多路复用机制select实现TCP服务器

IO多路复用机制select实现TCP服务器 一、前言二、新增使用API函数2.1、select()函数2.2、FD_*系列函数 三、实现步骤四、完整代码五、TCP客户端5.1、自己实现一个TCP客户端5.2、Windows下可以使用NetAssist的网络助手工具 小结 一、前言 手把手教你从0开始编写TCP服务器程序&a…