基于深度学习的垃圾检测与分类系统(含UI界面,yolov8、Python代码,数据集)

news2025/2/4 2:34:28

在这里插入图片描述

在这里插入图片描述

项目介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8

    yolov8主要包含以下几种创新:
        1. 添加注意力机制(SECBAM等)
        2. 修改可变形卷积(DySnake-主干c3替换、DySnake-所有c3替换)

数据集:
    网上下载的数据集,大约5000张左右,详细介绍见数据集介绍部分。

以上是本套代码的整体算法架构和对目标检测模型的修改说明,这些模型修改可以为您的 毕设、作业等提供创新点和增强模型性能的功能

如果要是需要更换其他的检测模型,请私信。

注:本项目提供所用到的所有资源,包含 环境安装包、训练代码、测试代码、数据集、视频文件、 界面UI文件等。


项目简介

本文将详细介绍如何使用深度学习中的YOLOv8算法实现对垃圾的检测,并对检测到的垃圾进行分类,且利用PyQt5设计了简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的yolov8模型,进行自己数据的检测。

该系统界面优美,检测精度高,功能强大。它具备多目标实时检测,同时可以自由选择感兴趣的检测目标。

本博文提供了完整的Python程序代码和使用教程,适合新入门的朋友参考。您可以在文末的下载链接中获取完整的代码资源文件。以下是本博文的目录:

目录

  • 项目介绍
  • 项目简介
  • 效果展示:
  • 🌟一、环境安装
  • 🌟二、数据集介绍
  • 🌟三、 目标检测介绍
    • yolov8相关介绍
  • 四、 yolov8训练步骤
    • 五、 yolov8评估步骤
    • 六、 训练结果
  • 🌟下载链接

效果展示:

功能:
1. 支持单张图片识别
2. 支持遍历文件夹识别
3. 支持识别视频文件
4. 支持结果导出(xls、csv两种格式)
5. 支持切换检测到的目标

基于深度学习钢铁表面缺陷检测系统(yolov8)


🌟一、环境安装

本项目提供所有需要的环境安装包(python、pycharm、cuda、torch等),可以直接按照视频讲解进行安装。具体的安装流程见此视频:视频链接
环境安装视频是以车牌项目为例进行讲解的,但是可以适用于任何项目。

视频快进到 3:18 - 21:17,这段时间讲解的是环境安装,可直接快进到此处观看。
在这里插入图片描述

环境安装包可通过百度网盘下载:
链接:https://pan.baidu.com/s/17SZHeVZrpXsi513D-6KmQw?pwd=a0gi
提取码:a0gi
–来自百度网盘超级会员V6的分享

上面这个方法,是比较便捷的安装方式(省去了安装细节),按照我的视频步骤和提供的安装包安装即可,如果要是想要多学一点东西,可以按照下面的安装方式走一遍,会更加熟悉。

环境安装方法2:
追求快速安装环境的,只看上面即可!!!

下面列出了5个步骤,是完全从0开始安装(可以理解为是一台新电脑,没有任何环境),如果某些步骤已经安装过的可以跳过。下面的安装步骤带有详细的视频讲解和参考博客,一步一步来即可。另外视频中讲解的安装方法是通用的,可用于任何项目

  1. python环境安装:B站视频讲解
  2. cuda、cudnn安装:B站视频讲解
  3. torch安装: B站视频讲解
  4. pycharm安装: B站视频讲解
  5. 第三方依赖包安装: B站视频讲解

按照上面的步骤安装完环境后,就可以直接运行程序,看到效果了。


🌟二、数据集介绍

我们使用的数据集是从网上下载的,该数据集共有约5000张图像,具体的类别如下:

1. 可回收物:
   - 电源银行(Power bank)
   - 袋子(Bag)
   - 化妆品用品(Toiletries)
   - 塑料玩具(Plastic toys)
   - 塑料餐具(Plastic dishes)
   - 塑料衣架(Plastic hangers)
   - 玻璃餐具(Glass dishes)
   - 金属餐具(Metal dishes)
   - 快递袋(Express delivery bag)
   - 插头和电线(Plug and wire)
   - 旧衣服(Old clothes)
   - 铝罐(Aluminum can)
   - 枕头(Pillow)
   - 毛绒玩具(Plush toy)
   - 鞋子(Shoes)
   - 切菜板(Cutting board)
   - 纸板盒子(Cardboard box)
   - 调料瓶(Seasoning bottle)
   - 酒瓶(Wine bottle)
   - 金属食品罐(Metal food cans)
   - 金属厨具(Metal kitchenware)
   - 锅(Pot)
   - 食用油桶(Edible oil barrel)
   - 饮料瓶(Beverage bottle)
   - 书纸(Book paper)
   - 垃圾桶(Trash bin- 塑料厨具(Plastic kitchenware)
   - 毛巾(Towel)
   - 纸袋(Paper bag)
   - 饮料纸盒(Beverage carton)

2. 厨余垃圾:
   - 剩饭剩菜(Leftover food)
   - 大骨头(Large bone)
   - 水果皮和果肉(Fruit peel and flesh)
   - 茶渣(Tea residue)
   - 蔬菜茎叶(Vegetable stalks and leaves)
   - 蛋壳(Eggshell)
   - 鱼骨(Fish bones)

3. 有害垃圾:
   - 干电池(Dry battery)
   - 药膏(Ointment)
   - 过期药物(Expired medicine)

4. 其他垃圾:
   - 快餐盒(Fast food container)
   - 受污染的塑料(Contaminated plastic)
   - 烟蒂(Cigarette butt)
   - 牙签(Toothpick)
   - 花盆(Flower pot)
   - 陶瓷餐具(Ceramic dishes)
   - 筷子(Chopsticks)
   - 受污染的纸张(Contaminated paper)

为了方便使用,数据集已经进行了标注,且转为了转换为YOLO格式,并且按照train、valtest的划分进行了组织。您可以直接使用这些数据集进行模型的训练和评估。

下面是一些数据集图片的截图,展示了具体的数据集的示例图像,以帮助您更好地了解数据集的内容和质量。

在这里插入图片描述


🌟三、 目标检测介绍

yolov8相关介绍

YOLOv8 是一个 SOTA 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

不过 ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 ultralytics 这个词,原因是 ultralytics 将这个库定位为算法框架,而非某一个特定算法,一个主要特点是可扩展性。其希望这个库不仅仅能够用于 YOLO 系列模型,而是能够支持非 YOLO 模型以及分类分割姿态估计等各类任务。
总而言之,ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体

  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法

在这里插入图片描述

网络结构如下:
在这里插入图片描述


四、 yolov8训练步骤

此代码的训练步骤极其简单,不需要修改代码,直接通过cmd就可以命令运行,命令都已写好,直接复制即可,命令如下图:
在这里插入图片描述
下面这条命令是 训练 添加 CBAM 注意力机制的命令,复制下来,直接就可以运行,看到训练效果(需要将coco_NEU-DET.yaml替换为自己的数据集的yaml文件)。

python ./train.py --epochs 500 --cfg models/yolov5s-CBAM-2.yaml --hyp data/hyps/hyp.scratch-low.yaml --data data/coco_NEU-DET.yaml --weight weights/yolov5s.pt --workers 4 --batch 16

执行完上述命令后,即可完成训练,训练过程如下:
在这里插入图片描述

下面是对命令中各个参数的详细解释说明:

  • python: 这是Python解释器的命令行执行器,用于执行后续的Python脚本。

  • ./train.py: 这是要执行的Python脚本文件的路径和名称,它是用于训练目标检测模型的脚本。

  • --epochs 500: 这是训练的总轮数(epochs),指定为500,表示训练将运行500个轮次。

  • --cfg models/yolov5s-CBAM-2.yaml: 这是YOLOv5模型的配置文件的路径和名称,它指定了模型的结构和参数设置。

  • --hyp data/hyps/hyp.scratch-low.yaml: 这是超参数文件的路径和名称,它包含了训练过程中的各种超参数设置,如学习率、权重衰减等。

  • --data data/coco_NEU-DET.yaml: 这是数据集的配置文件的路径和名称,它指定了训练数据集的相关信息,如类别标签、图像路径等。

  • --weight weights/yolov5s.pt: 这是预训练权重文件的路径和名称,用于加载已经训练好的模型权重以便继续训练或进行迁移学习。

  • --workers 4: 这是用于数据加载的工作进程数,指定为4,表示使用4个工作进程来加速数据加载。

  • --batch 16: 这是每个批次的样本数,指定为16,表示每个训练批次将包含16个样本。

通过运行上面这个命令,您将使用YOLOv5模型对目标检测任务进行训练,训练500个轮次,使用指定的配置文件、超参数文件、数据集配置文件和预训练权重。同时,使用4个工作进程来加速数据加载,并且每个训练批次包含16个样本。


五、 yolov8评估步骤

评估步骤同训练步骤一样,执行1行语句即可,注意--weights需要变为自己想要测试的模型路径, VOC_helmet.yaml替换为自己的数据集的yaml文件。

python ./val.py --data  data/VOC_helmet.yaml --weights ../weights/yolov5s.yaml/weights/best.pt

评估结果如下:
在这里插入图片描述


六、 训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述


🌟下载链接

   该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为main.py,提供用到的所有程序。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,为避免出现运行报错,请勿使用其他版本,详见requirements.txt文件;

    若您想获得博文中涉及的实现完整全部程序文件(包括训练代码、测试代码、训练数据、测试数据、视频,py、 UI文件等,如下图),这里已打包上传至博主的面包多平台,可通过下方项目讲解链接中的视频简介部分下载,完整文件截图如下:
在这里插入图片描述

项目演示讲解链接:B站

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1337480.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【树莓派4b的uboot编译移植】

树莓派4b的uboot编译移植 引言 0.1、什么是uboot OS跑起来前,需要的一段引导程序负责部署整个计算机系统,引导操作系统内核启动并给内核传参提供一个命令行界面供人操作是一个开源项目,uboot就是universal bootloader(通用的启…

【基础篇】四、类加载器ClassLoader

文章目录 1、类加载器2、分类3、启动类加载器4、手动扩展启动类加载器5、扩展类加载器6、应用程序类加载器 1、类加载器 类加载器ClassLoader,是JVM提供给应用程序去获取类和接口的字节码数据的。 上面的类加载器对JVM进行了本地接口调用。本地接口即JNI&#xff0…

MySQL 中 blob 和 text 数据类型

应用场景 日志表中请求参数用的text,公告表中内容详情用的mediumblob。 1. blob 类型 blob(binary large object) 是一个可以存储二进制文件的容器,主要用于存储二进制大对象,例如可以存储图片,音视频等文件。按照可存储容量大小…

redis 从0到1完整学习 (七):ZipList 数据结构

文章目录 1. 引言2. redis 源码下载3. zipList 数据结构3.1 整体3.2 entry 数据结构分析3.3 连锁更新 4. 参考 1. 引言 前情提要: 《redis 从0到1完整学习 (一):安装&初识 redis》 《redis 从0到1完整学习 (二&am…

Python(五)—— 闭包装饰器

13. 闭包 13.1 闭包的案例 给大家提个需求,然后用函数去实现:完成一个计算不断增加的系列值的平均值的需求 例如:整个历史中的某个商品的平均收盘价。就是从这个商品一出现开始,每天记录当天价格,然后计算他的平均值…

SpringBoot源码搭建

文章目录 源码下载搭建项目构建学习博客 源码下载 需要环境 : JDK 1.8Maven 3.5Spring Boot 1.x.x: Gradle 版本建议为2.9或更高版本。Spring Boot 2.x.x: Gradle 版本建议为4.x.x或更高版本。 GitHub 从v2.3.x开始,SpringBoot开始强制用Gradle构建项…

深度解析:CRM、ERP之间的关联和区别以及双系统的联系与集成(附系统架构图)

目录 一、系统简介 1.1 CRM是什么 1.2 ERP是什么 二、发展阶段 2.1 CRM发展阶段 2.2 ERP发展阶段 三、系统架构 3.1 CRM系统架构 3.2 ERP系统架构 四、CRM与ERP的区别 4.1 目标不同 4.2 不同阶段的发展中不同的适用性 4.2.1 刚起步的小公司 4.2.2 对于更大、更成…

数字电子技术 一天速成

文章目录 一、数制与编码1. 数制转换2. BCD编码 二、逻辑代数1. 常见逻辑运算及逻辑门 三、化简逻辑表达式1. 卡诺图 求 表达式2. 表达式 画 卡诺图3. 卡诺图 化简 表达式4. 公式法 化简 表达式 ⭐⭐5. 表达式 求 反函数6. 卡诺图 求 反函数 四、组合逻辑电路的分析和设计1. 逻…

Gin框架之使用 go-ini 加载.ini 配置文件

首先,联想一个问题,我们在部署服务时,通常为了方便,对于需要迭代更新的代码进行修改,但是比对shell,可以搞一个变量将需要修改的,以及修改起来变动处多的,写在变量内,到时候如果需要变更,可以直接变更变量即可; 那么,golang有没有什么方式可以将需要变的东西保存起…

Hexo 部署 Github Pages, Github Actions自动部署

想整个静态的博客部署在github pages 历经两天的折磨终于是摸索成功了,官网的文档太简陋了,很多东西没说清楚。 欢迎大家访问我的博客! Canyue 最终实现的效果,一个项目仓库,main 分支存放源代码,gh-page…

H266/VVC帧间预测编码技术概述

帧间预测编码简述 帧间预测利用视频时间域的相关性,使用邻近已编码图像像素值预测当前图像的像素值,能有效去除视频时域冗余。 目前主要的视频编码标准中,帧间预测都采用基于块的运动补偿技术,不同的编码标准有不同的分块方式。 …

Spring企业开发核心框架

文章目录 Spring企业开发核心框架一、框架前言1. 总体技术体系2. 框架概念和理解 二、Spring Framework简介1. Spring 和 SpringFramework2. SpringFramework主要功能模块3. SpringFramework 主要优势 三、Spring IoC 容器概念1. 组件和组件管理概念2. Spring IoC容器和容器实现…

C# LINQ

一、前言 学习心得&#xff1a;C# 入门经典第8版书中的第22章《LINQ》 二、LINQ to XML 我们可以通过LINQ to XML来创造xml文件 如下示例&#xff0c;我们用LINQ to XML来创造。 <Books><CSharp Time"2019"><book>C# 入门经典</book><…

上海亚商投顾:沪指冲高回落 游戏股午后集体重挫

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 三大指数12月22日冲高回落&#xff0c;黄白二线分化严重。游戏股午后大跌&#xff0c;盛天网络、游族网络、巨…

【JAVA】黑马MybatisPlus 学习笔记【终】【插件功能】

4.插件功能 MybatisPlus提供了很多的插件功能&#xff0c;进一步拓展其功能。目前已有的插件有&#xff1a; PaginationInnerInterceptor&#xff1a;自动分页TenantLineInnerInterceptor&#xff1a;多租户DynamicTableNameInnerInterceptor&#xff1a;动态表名OptimisticL…

bootstrap:bootstrapValidator校验数据是否可用(验证账户名是否重复)

目录 1、html内容 2、bootstrap的校验 3、控制层代码&#xff1a; 4、业务层核心代码 5、效果 1、html内容 <form id"jangleEditForm" name"jangleEditForm" class"formJ" ><div class"form-group" ><label for&q…

10个练习Web渗透测试的最佳网站

黑客的最高境界——社会工程学&#xff01;社会工程在网络安全领域充当了关键角色&#xff01;黑客技术如何操纵信息安全&#xff1f;社会工程攻击的多种形式&#xff0c;包括网络钓鱼、电子邮件欺诈、诱饵场景&#xff1b;如何应对黑客利用未提出的问题的策略。防范黑客社会工…

二叉树OJ题——3.翻转二叉树

226. 翻转二叉树 - 力扣&#xff08;LeetCode&#xff09; /* 解题思路&#xff1a; 翻转每一棵树的左右子树根节点 */void swap (struct TreeNode**x,struct TreeNode**y) {struct TreeNode*num0;num*x;*x*y;*ynum; }struct TreeNode* invertTree(struct TreeNode* root) { i…

【广州华锐互动】VR科技科普展厅平台:快速、便捷地创建出属于自己的虚拟展馆

随着科技的不断进步&#xff0c;虚拟现实(VR)技术已经在许多领域取得了显著的成果。尤其是在展馆设计领域&#xff0c;VR科技科普展厅平台已经实现了许多令人瞩目的新突破。 VR科技科普展厅平台是广州华锐互动专门为企业和机构提供虚拟展馆设计和制作的在线平台。通过这个平台&…

二分查找——OJ题(二)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、点名1、题目讲解2、算法原理3、代码实现 二、搜索旋转排序数组中的最⼩值1、题目讲解2、算…