论文解读--Compensation of Motion-Induced Phase Errors in TDM MIMO Radars

news2025/2/13 18:18:49

TDM MIMO雷达运动相位误差补偿

摘要

        为了实现高分辨率的到达方向估计,需要大孔径。这可以通过提供宽虚拟孔径的多输入多输出雷达来实现。但是,它们的工作必须满足正交发射信号的要求。虽然发射单元的时分复用是一种低硬件成本的正交实现,但在非平稳情况下会出现相位误差。这篇文章简要地讨论了运动引起的相位误差的问题,并描述了处理步骤,没有额外操作就可以减少(误差)。仿真和实测数据验证了该方法的有效性。

1 介绍

        目前汽车雷达的发展方向是多输入多输出(MIMO)系统,由M个发射器和N个接收器组成。它们提供了大量的虚拟天线元件和高角度分辨率,与传统系统相比,这减少了硬件和孔径尺寸的工作量。但实现时需要传输正交信号。在线性调频chirp序列雷达中,这通常是通过时间、频率或码分复用来完成的。这篇文章的重点是时分复用(TDM)方案,这是非常常用的[1]-[4]。

        chirp序列雷达发射一系列线性频率斜坡。每个的基带时间样本存储在一个矩阵中,用二维傅里叶变换提取距离和速度。这导致了每个单通道的距离-多普勒频谱。当采用TDM MIMO方案时,每次发送单个chirp后,都会改变主动发射单元。图1所示为两个发射机(M=2)的示例。每个发射机和每个接收机的几何位置形成一个虚拟阵列,该阵列的虚拟元素最多有M*N个。为虚拟阵列的每个阵元找到了距离-多普勒频谱。

图1 在示例性TDM MIMO方案中,发射机Tx1和Tx2以交替方式工作。Tr限制了不模糊多普勒频率[5]。

        天线单元之间的相位差用于到达方向(DoA)估计。在非MIMO线性阵列中,一个信号在两个接收信道上的相位差为

          (1)

        其中,θ为信号的入射角,k为波数,d为阵元之间的距离。在如图1所示的TDM MIMO系统中,由于发射机Tx1和Tx2之间的切换时间Tr/2,必须考虑额外的相位差。这使(1)变成

          (2)

        目标运动产生多普勒频率fD,引入了额外的相位项。对于具有高fD的目标,受到此误差的强烈影响。一般来说,对于M个发射机,在第M个发射机处的相位关系Txm为

          (3)

        为了补偿运动引起的相位误差,[6]提出在虚拟孔径中创建重叠阵元。这些阵元用于估计和修正误差;然而,这是以(M−1)个独立虚拟阵元为代价的,因此减小了最大孔径尺寸或最大通道数量。优化发射机的切换方案以减小相位误差在[7]中进行了讨论。文献[8]介绍了运动误差的估计和插值。另一种方法是通过频率坡道的交错传输来减小误差[9]。

        在这篇文章中,介绍了一种直接的方法,并演示了用基本的信号处理技术处理chirp序列雷达的运动引起的相位误差。这种方法不需要任何额外的硬件工作,并且只有很小的处理需求。

2 相位误差补偿

        在本节中,描述了运动引起的相位误差的来源,并调整了用于提取速度的离散傅立叶变换(DFT)以减轻相位误差。

        单频chirp l = 0,1,2,…的基带时间信号的模型与[5]类似为

          (4)

        其中c0为光速,fc为chirp的中心频率,R为目标距离。距离相关频率为fR = 2BR/(c0Tc)。对于持续时间短的Tc和高带宽B的chirp,通常假设fR >> fD。傅里叶变换F(sTxm (t, l))得到chrip l的距离谱

        

        图2显示了在单个发射机Tx1的情况下,单个目标在多个频率chirp下的复矢量STx1 (fR, l)。在这种非MIMO设置中,计算所有chirp的第二次傅立叶变换以提取速度。对于频率fD,傅里叶变换将所有向量旋转到相位φTx1 (l = 0),得到最大值

          (6)

        图2 在单发射机系统中,单个目标在两个连续chirp之间的相位差为2π fDTr。对于多普勒频率的提取,傅里叶变换将所有向量旋转到相位φTx1 (l = 0),用箭头表示。矢量的构造叠加导致频谱在fD处出现一个峰。

        在TDM MIMO的情况下,存在第二个发射机Tx2。如图1所示,每次连续的chirp后,活动的发射机被切换。在不失一般性的前提下,假设φ = 0。图3显示了DFT如何将Tx2对应的所有向量变换为相位φTx2 (l = 0)。Tx1对应的所有向量的行为仍然如图2所示引入运动引起的系统误差φerr = 2π fDTr /2

       图3 在TDM MIMO雷达中,每个发射机的chirp都是独立处理的。当Tx1的DFT将所有相位转换为φTx1 (l = 0)时,Tx2的相位被转换为φTx2 (l = 0),这导致系统相位误差φerr = 2π fDTr /2。

        为了减轻这种误差,改变多普勒处理。Tx1对应的chirp仍然用正常的DFT(6)进行处理。对于Tx2传输的chirp,DFT调整为

          (7)

        通过这种稍微调整的DFT, Tx2的chirp相位也被转换为相位φTx1 (l = 0)。对于θ≠0,根据(1)将一个恒定相位添加到φTx2 (l)中。由于该相移与l无关,因此可以从(7)的和中提取。因此,所提出的处理对任何θ都有效。[10]中提出了一种减少多普勒模糊的相关处理方法。

        将该方案推广到M个发射机,计算发射机Txm的多普勒DFT

          (8)

        由于DFT的线性,(8)在多目标情况下也成立。注意,这种处理方式相当于在常规DFT处理之前在多普勒维中进行交错的零填充。这意味着对于Tx1传统DFT的输入是向量

          (9)

        对于Tx2,它是

          (10)

3 仿真和测量

        仿真比较了应用传统离散傅里叶变换(6)和改进的离散傅里叶变换(8)对运动目标的DoA估计与静态目标的DoA估计。仿真雷达采用表1中的参数,采用TDM MIMO阵列,其中两个发射机相距5λ,十个接收机间隔λ/2。它形成一个20元均匀线性虚拟阵列,阵元间距λ/2。所有的DoA估计都是用Bartlett波束形成器完成的[11]。

表1 仿真和测量的调制参数

        在无噪声仿真中,假设目标距离为30m,θ=15°,速度为v = 0和v = 18m/s。图4显示了包含目标的距离-多普勒单元的DoA估计。v = 0的估计结果为15.2°,最接近15°的实际DoA。此估计用作参考。当v ≠ 0时,用(6)确定距离-多普勒频谱时,运动引起的相位误差使估计的DoA变为18.5°,导致频谱变形。然而,当使用(8)进行多普勒处理时,v = 18m/s的估计与静态参考相同。

        测量评估是用一个TDM MIMO雷达进行的,该雷达有两个发射机和十个接收机,调制参数见表1。虚拟阵列是一个均匀的线性阵列,元件间距为0.545λ,包含一个重叠阵元。传感器安装在一辆速度约为18米/秒的汽车上。采用传统的DFT处理(6)和新提出的处理(8)计算距离-多普勒矩阵。在距离-多普勒频谱中选择一个明显的目标峰进行DoA估计。图5显示了该峰值在虚拟阵列位置处的相位。在位置10(重叠阵元),两个相位包含在图中。转换前的虚拟阵元属于第一发射机,其他虚元属于第二发射机。在重叠阵元位置,由于运动引起的相位误差,常规处理(6)存在1.54 rad的相位不连续。相位校正距离-多普勒处理(8)没有显示出如此严重的偏差。相反,重叠阵元位置处的相位值几乎相同。

        图6给出了采用式(6)进行距离多普勒处理、采用式(6)进行距离多普勒处理并根据[6]进行重叠阵元相位校正、采用单个发射机数据[单输入多输出(SIMO)]进行距离多普勒估计、采用式(8)进行距离多普勒处理的几种情况对应的DoA估计。

        (6)的应用导致DoA估计出现两个宽峰。总体最大值出现在DOA为1°处。当使用重叠阵元进行相位校正时,估计结果在3.9°处出现一个窄峰,曲线形状的旁瓣明显降低。SIMO估计孔径较小,分辨率较差;然而,4.3°DoA估计的最大值与之前的估计非常相似。用(8)进行距离多普勒处理后的MIMO DoA估计,估计DoA为3.9°,曲线形状与使用重叠阵元处理后的DoA估计基本一致;然而,它在虚拟孔径不需要重叠的阵元。

       图4 不同速度v = 0和v = 18m/s下单个目标在15°方向上的仿真。当v = 0时,不发生相位误差。在v = 18m/s的情况下,用(6)进行多普勒处理,运动引起的相位误差会导致错误的DoA估计和频谱变形。经调整后的DFT(8)进行多普勒处理时,DoA估计与不考虑速度的DoA估计相同。

图5 在MIMO虚拟阵列的阵元测量相位。位置10的阵元在虚拟孔径中出现两次。

图6 测量为18m/s的DoA估计

4 结论

        这篇文章介绍了一种距离-多普勒处理,以减轻TDM MIMO雷达中运动引起的相位误差,而无需额外的硬件努力,如重叠阵元。仿真结果表明,该处理方法在动态场景下的DoA估计性能与传统处理方法在静态场景下的DoA估计性能相同。测量结果也验证了运动引起的相位误差的补偿。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1335226.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java练习之abstract (抽象) final(最终) static(静态) 练习

1:分析总结:写出private、abstract、static、final之间能否联动使用,并写出分析原因 private static final 之间可以任意结合 abstract 不可以与private static final 结合使用 2:关于三个修饰符描述不正确的是(AD) A. static …

STM32单片机入门学习(七)-外部中断-光敏计数

光敏传感器模块: 光敏传感模块一DO端接B14,GND接GND,VCC接VCC,AO不接。 OLED: OLED:SCL接B12,SDA接B13 如图: main.c #include "stm32f10x.h" #include "Delay.h" //delay函数所在头文件 #include "OLED.…

自媒体实战篇:剪辑软件应用与实操

剪辑软件应用与实操 剪映基础界面认识 素材面板 导入本地素材,剪映自带素材库,音频,文本等素材合集面板播放预览 预览本地素材,,剪映自带素材库以及时间线面板中的素材的实时效果时间线面板 对素材进行基础的编辑操作,调整素材轨道等素材功能面板 可对素材或者文本等精细…

使用 Amazon CodeCatalyst 中的生成式 AI 助手 Amazon Q 提高开发人员的工作效率(预览版)

今天,我很荣幸能够向各位介绍 Amazon CodeCatalyst 中可用的新型生成式 AI 助手 Amazon Q, 主要用于加速软件分发。 加速软件功能开发 – Amazon Q 的这项功能开发技术可以帮助您快速地完成软件开发任务,例如添加注释和 README、优化问题描述…

AspectJ入门(一)

AspectJ是一个面向切面的框架,扩展了Java语言。有一个专门的编译器用来生成遵守Java字节编码规范的Class文件。Spring的AOP底层也是用了这个框架。 AOP可以拦截指定的方法并对方法增强,而且无需侵入到业务代码中,使业务与非业务处理逻辑分离…

PortSwigger Access Control

lab1: Unprotected admin functionality 访问robots.txt 进了删除即可 lab2: Unprotected admin functionality with unpredictable URL 访问admin-d0qwj5 lab3: User role controlled by request parameter 发现Cookie中存在判断是否为admin lab4: User role can be modifie…

C#教程(五):枚举

1、什么是枚举 枚举(Enum)是一种用于定义命名常量集合的数据类型。它允许开发人员创建一个命名的整数常量集合,这些常量可以在代码中代表特定的值。 2、示例 以下是一个简单的枚举示例: // 定义一个枚举类型 enum DaysOfWeek …

9道软件测试面试题,刷掉90%的测试程序员

经历了“金9银10”,转眼2024年招聘季就要来了,没点真本事真技术,没点面试经验,不了解点职场套路,如何过五关斩六将?如何打败面试官?如何拿下那梦寐以求的offer? 如果你的跳槽意向已…

8.15 PowerBI系列之DAX函数专题-找出无购买行为的客户

需求 实现 isempty var v_table1 filter(产品表,产品表[商品类别]"furniture") var v_table2 filter(产品表,产品表[商品类别]"XXXX") return isempty(v_table1) //return isempty(v_tabble1) //检查表是否为空 // return countrows(v_table1) //返回非…

50个免费的 AI 工具,提升工作效率(附网址)

上次我们已经介绍了20个精选的提高工作效率的免费AI工具,但如果你觉得这些AI工具还不过瘾的话,想进一步成为职场中最了解AI的人,本文将汇总介绍免费最新的50个AI工具。 DeepSwap DeepSwap 是一个基于 AI 的工具,适用于想要制作令人…

2023航天推进理论基础考试划重点(W老师)绪论固体推进剂

1、推进系统的分类: 按工作原理分, 直接反作用发动机(喷气发动机) 火箭发动机、组合发动机、冲压发动机、涡轮喷气发动机、涡轮风扇发动机 间接反作用发动机 活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、航空电动机 2、后面不细讲的火箭发动机要…

数据通信网络基础华为ICT网络赛道

目录 前言: 1.网络与通信 2.网络类型与网络拓扑 3.网络工程与网络工程师 前言: 数据通信网络基础是通信领域的基本概念,涉及数据传输、路由交换、网络安全等方面的知识。华为ICT网络赛道则是华为公司提出的一种技术路径,旨在通…

ts相关笔记(extends、infer、Pick、Omit)

最近刷了本ts小册,对一些知识点做下笔记。 extends extends 是一个关键字,用于对类型参数做一些约束。 A extends B 意味着 A 是 B 的子类型,比如下面是成立的 ‘abc’ extends string599 extends number 看下面例子: type …

枚举(蓝桥杯备赛系列)acwing版

枚举 前言 hello,大家好,前面一段时间已经是把acwing Linux基础课讲完了,其实那些内容完全可以带领小白入门Linux我说过如果有人留言要Linux和Windows server 配置DNS Web ftp 的内容我就做一期,但是没人留言我也就先不自作多情了…

ComfyUI激活中文

comfyui中文地址如下: https://github.com/AIGODLIKE/AIGODLIKE-ComfyUI-Translationhttps://github.com/AIGODLIKE/AIGODLIKE-ComfyUI-Translation如何安装? 1. git安装 进入项目目录下的custom_nodes目录下,然后进入控制台,运…

【Flutter】黑白图片

一、将图片处理成黑白图片 //第一种方法CachedNetworkImage(imageUrl: imageUrl,width: 80,height: 80,fit: BoxFit.cover,color: Colors.black,//目标颜色colorBlendMode: BlendMode.color,//颜色混合模式)//第二种方法ShaderMask(shaderCallback: (Rect bounds) {return Lin…

ESP32通过PWM方波驱动蜂鸣器

摘要:本文介绍一下有源蜂鸣器和无源蜂鸣器的区别,然后给出两种驱动蜂鸣器的方式。 从外观上来看,无源蜂鸣器和有源蜂鸣器的区别主要有以下几个方面: 1.无源蜂鸣器比较“矮”,有源蜂鸣器比较“高”; 2.无源…

【方案】如何利用大数据+云计算技术打造智能环境监控系统?

小编在之前的文章中也提到过基于云计算的环境智能监控系统是什么样的,收到了很多朋友的关注,今天小编就再次根据智能监控为切入点,深入讲解智能环境监控系统方案的详细落实。 1、传感器节点:首先需要选择适合应用场景的各类传感器…

【开放集检测】OpenGAN: Open-Set Recognition via Open Data Generation 论文阅读

文章目录 英语积累为什么使用GAN系列网络进行开放集检测摘要1. 前言2. 相关工作开集检测基于GAN网络的开集检测基于暴露异常数据的开集检测 3. OpenGAN3.1 公式建模3.1.1 二分类方法存在问题如何解决 3.1.2 使用合成数据存在问题如何解决 3.1.3 OpenGAN3.1.4 模型验证 3.2 先前…

OpenEuler安装内网穿透工具实现ssh连接openEuler系统

文章目录 1. 本地SSH连接测试2. openEuler安装Cpolar3. 配置 SSH公网地址4. 公网远程SSH连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 本文主要介绍在openEuler中安装Cpolar内网穿透工具实现远程也可以ssh 连接openEuler系统使用. 欧拉操作系统(openEuler, 简称“欧拉”…