OpenCV利用HSV颜色区间分离不同物体

news2025/1/15 19:39:46

需求

当前有个需求是从一个场景中将三个不同的颜色的二维码分离出来,如下图所示。
示例图像
这里有两个思路可以使用

  • 思路一是通过深度学习的方式,训练一个能够识别旋转边界框的模型,但是需要大量的数据进行模型训练,此处缺少训练数据,不太方便执行。
  • 思路二则是直接通过颜色进行分离,找到颜色的区间,通过去骗判断的方式分别分离出三个不同颜色对应的轮廓。

方案

首先,先要找到图像的HSV颜色对应表格,如下所示。
在这里插入图片描述
然后按照读取图像->转化为HSV通道图像->颜色分离的思路编写代码即可,详细的代码如下。

# -*- coding: utf-8 -*-
# @Time    : 2023/5/31 22:59
# @Author  : 肆十二
# @Email   : 3048534499@qq.com
# @File    : demo
# @Software: PyCharm

import numpy as np
import cv2
import os

# 参考:https://blog.csdn.net/chenghaoy/article/details/86509950
def get_red(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower_1 = np.array([0, 43, 46])
    redUpper_1 = np.array([10, 255, 255])

    redLower_2 = np.array([156, 43, 46])
    redUpper_2 = np.array([180, 255, 255])

    # 读取图像
    img = cv2.imread(image_path)

    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # 去除颜色范围外的其余颜色
    mask_1 = cv2.inRange(hsv, redLower_1, redUpper_1)
    mask_2 = cv2.inRange(hsv, redLower_2, redUpper_2)
    mask = mask_1 + mask_2
    # mask = cv2.merge([mask_1, mask_2])
    # mask = cv2.
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    cv2.imwrite("results/red.jpg", binary)


def get_yellow(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower = np.array([26, 43, 46])
    redUpper = np.array([34, 255, 255])

    # 读取图像
    img = cv2.imread(image_path)

    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # 去除颜色范围外的其余颜色
    mask = cv2.inRange(hsv, redLower, redUpper)
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    cv2.imwrite("results/yellow.jpg", binary)

def get_green(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower = np.array([35, 43, 46])
    redUpper = np.array([77, 255, 255])
    # 读取图像
    img = cv2.imread(image_path)
    # img = cv2.medianBlur(img, 5)
    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # hsv =
    # 去除颜色范围外的其余颜色
    mask = cv2.inRange(hsv, redLower, redUpper)
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    # img[img==0] =
    cv2.imwrite("results/green.jpg", binary)

if __name__ == '__main__':
    image_path = "a.jpg"

    get_red(image_path)
    get_yellow(image_path)
    get_green(image_path)

OK在主函数中传入上图,之后在result文件夹下就能生成分离之后的结果,如下所示。

  • 绿色二维码分离结果
    在这里插入图片描述

  • 红色二维码分离结果
    在这里插入图片描述

  • 黄色二维码分离结果
    在这里插入图片描述

总结

很多时候,不需要过于依赖AI,通过传统的图像检测算法也能达到良好的效果,比如今天就通过HSV颜色通道的形式来进行分离,这在工业场景中是非常实用的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331828.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Quartz.NET 事件监听器

1、调度器监听器 调度器本身收到的一些事件通知,接口ISchedulerListener,如作业的添加、删除、停止、挂起等事件通知,调度器的启动、关闭、出错等事件通知,触发器的暂停、挂起等事件通知,接口部分定义如下&#xff1a…

springMVC-与spring整合

一、基本介绍 在项目开发中,spring管理的 Service和 Respository,SrpingMVC管理 Controller和ControllerAdvice,分工明确 当我们同时配置application.xml, springDispatcherServlet-servlet.xml , 那么注解的对象会被创建两次, 故…

ZooKeeper 使用介绍和原理详解

目录 1. 介绍 重要性 应用场景 2. ZooKeeper 架构 服务角色 数据模型 工作原理 3. 安装和配置 下载 ZooKeeper 安装和配置 启动 ZooKeeper 验证和管理 停止和关闭 4. ZooKeeper 数据模型 数据结构和层次命名空间: 节点类型和 Watcher 机制&#xff…

8002D 3W单声道带关断模式音频功率放大器 适用于游戏机、无源扬声器

8002D 是一款 AB 类&#xff0c;单声道带关断模式&#xff0c;桥式音频功率放大器。在输入 1KHZ,5V 工作电压时&#xff0c;最大驱动功率为: 3W.(422 负载&#xff0c;THD<10%)&#xff0c;2W,(4Q负载&#xff0c;THD<1%):音频范围内总谐波失真噪音小于 1%(20Hz20KHz ); …

基于YOLOv8深度学习的200种鸟类智能检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.跳蛛算法4.实验参数设定5.算法结果6.参考文献7.MA…

如何使用树莓派Bookworm系统中配置网络的新方法NetworkManager

树莓派在 10 月新出的 Bookworm 版本系统中&#xff0c;将使用多年的 dhcpcd 换成了 NetworkManager&#xff08;以前是在rasp-config中可选&#xff09;&#xff0c;这是因为 Raspberry Pi OS 使用的是 Debian 内核&#xff08;和 Ubuntu 一样&#xff09;&#xff0c;所以树莓…

持续集成交付CICD:Linux 部署 Jira 9.12.1

目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave &#xff08;从节点&#xff09; jira9.12.1…

Java经典框架之Spring

Java经典框架之Spring Java 是第一大编程语言和开发平台。它有助于企业降低成本、缩短开发周期、推动创新以及改善应用服务。如今全球有数百万开发人员运行着超过 51 亿个 Java 虚拟机&#xff0c;Java 仍是企业和开发人员的首选开发平台。 课程内容的介绍 1. Spring简介 2.…

kubernetes集群 应用实践 kafka部署

kubernetes集群 应用实践 kafka部署 零.1、环境说明 零.2、kafka架构说明 zookeeper在kafka集群中的作用 一、Broker注册 二、Topic注册 三、Topic Partition选主 四、生产者负载均衡 五、消费者负载均衡 一、持久化存储资源准备 1.1 创建共享目录 [rootnfsserver ~]# mkdir -…

springcloud-gateway-2-鉴权

目录 一、跨域安全设置 二、GlobalFilter实现全局的过滤与拦截。 三、GatewayFilter单个服务过滤器 1、原理-官方内置过滤器 2、自定义过滤器-TokenAuthGatewayFilterFactory 3、完善TokenAuthGatewayFilterFactory的功能 4、每一个服务编写一个或多个过滤器&#xff0c…

Centos安装vsftpd:centos配置vsftpd,ftp报200和227错误

一、centos下载安装vsftpd&#xff08;root权限&#xff09; 1、下载安装 yum -y install vsftpd 2、vsftpd的配置文件 /etc/vsftpd.conf 3、备份原来的配置文件 sudo cp /etc/vsftpd.conf /etc/vsftpd.conf.backup 4、修改配置文件如下&#xff1a;vi /etc/vsftpd.conf …

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器 背景 ExoPlayer与Media3的能力结合&#xff0c;为Android应用程序播放多媒体内容提供了强大的解决方案。在本教程中&#xff0c;我们将介绍如何设置带有Media3的ExoPlayer来支持使用M3U8 URL进行直播流。此外&#x…

【数据结构一】初始Java集合框架(前置知识)

Java中的数据结构 Java语言在设计之初有一个非常重要的理念便是&#xff1a;write once&#xff0c;run anywhere&#xff01;所以Java中的数据结构是已经被设计者封装好的了&#xff0c;我们只需要实例化出想使用的对象&#xff0c;便可以操作相应的数据结构了&#xff0c;本篇…

锯齿云服务器租赁使用教程

首先登陆锯齿云账号 网盘上传数据集与代码 随后我们需要做的是将所需要的数据集与代码上传到网盘&#xff08;也可以直接在租用服务器后将数据集与代码传到服务器的硬盘上&#xff0c;但这样做会消耗大量时间&#xff0c;造成资源浪费&#xff09; 点击工作空间&#xff1a;…

【Python】基于flaskMVT架构与session实现博客前台登录登出功能

目录 一、MVT说明 1.Model层 2.View层 3.Template层 二、功能说明 三、代码框架展示 四、具体代码实现 models.py 登录界面前端代码 博客界面前端代码&#xff08;profile.html&#xff09; main.py 一、MVT说明 MVT架构是Model-View-Template的缩写&#xff0c;是…

基于 Editor.js 开发富文本编辑器库

开始 Editor.js 提供了简单而直观的用户界面&#xff0c;根据需求可以灵活添加自定义的编辑工具&#xff0c;通过插件扩展功能 Editorjs 使用 js 开发&#xff0c;脱离框架依赖&#xff0c;因此可以基于它封装富文本编辑器&#xff0c;用于 Vue 和 React 项目 editor-js-com…

电化学仿真的基础知识笔记

1 概述 电化学反应是一种特殊的化学反应&#xff0c;其能量转移形式为化学能和电能之间互相转换。根据能量转换方向&#xff0c;可分为两类&#xff1a; 原电池&#xff08;Galvanic cells&#xff09;&#xff1a;将化学能转化为电能&#xff0c;对外放电电解槽&#xff08;…

2024 年 22 款顶级免费数据恢复软件比较 [Windows 和 Mac]

适用于 Windows 和 Mac 用户的最佳数据恢复软件下载列表和比较&#xff0c;可快速恢复丢失的数据、已删除的文件、照片或格式化的分区数据&#xff1a; 数据恢复软件是一种从任何存储介质恢复丢失文件的应用程序。它可以恢复由于病毒攻击、硬盘故障或任何其他原因而意外删除或…

Hadoop入门学习笔记——四、MapReduce的框架配置和YARN的部署

视频课程地址&#xff1a;https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接&#xff1a;https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记&#xff08;汇总&#xff09; 目录 四、MapReduce的框架配置和YARN的部署4.1. 配置MapReduce…