基于YOLOv8深度学习的200种鸟类智能检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

news2025/1/15 19:57:06

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:智能鸟类检测与识别系统在生态保护、科学研究、野生动物监测、以及生态旅游等领域扮演着举足轻重的角色。本文基于YOLOv8深度学习框架,通过11788张图片,训练了一个进行鸟类智能检测与识别的目标检测模型,可检测200种不同鸟类。并基于此模型开发了一款带UI界面的鸟类智能检测与识别系统,可用于实时检测场景中的不同鸟类,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

智能鸟类检测与识别系统在生态保护、科学研究、野生动物监测、以及生态旅游等领域扮演着举足轻重的角色。

首先,这类系统对生态保护有极其重要的影响,它能够帮助研究者和保护人员准确地监测鸟类种群的动态,评估受保护区域的生物多样性,及时发现稀有或濒危鸟种,从而制定更有效的保护措施。
其次,在科学研究领域,智能识别系统能够提供大量精确的鸟类观察数据,协助研究人员进行行为学、迁徙学和生态学的研究,加深人们对鸟类习性及其生态系统的理解。在野生动物监测方面,智能检测系统可以减少人为干扰,提高数据的收集效率和准确度,助力森林管理及非法狩猎的预防。
此外,在生态旅游业,鸟类检测与识别技术可以提升游客的体验,实现自动化识别和解说服务,让游客更深入地了解自然界的奥妙。
综上所述,智能鸟类检测与识别系统具有广阔的应用前景,不仅可以促进生态环境保护,还能够支持科学研究,提高监测效率,且对于推动生态文明建设和发展生态旅游具有积极作用。

博主通过搜集不同种类的鸟类的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的鸟类智能检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行200种鸟类的检测与识别,具体鸟类名称见数据集介绍部分;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于不同鸟类的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含11788张图片,其中训练集包含5994张图片验证集包含5794张图片,部分图像及标注如下图所示。
具体200种鸟类名称如下:

[“黑足信天翁”, “黑脚信天翁”, “黄脚信天翁”, “廓嘴安尼鸟”, “冠燕鸥”, “小艾基”, “鹦哥艾基”, “犀牛艾基”, “布氏黑鸟”, “红翅黑鸟”, “锈黑鸟”, “黄头黑鸟”, “黑喉鹀”, “靛蓝鹀”, “翠蓝鹀”, “彩鹀”, “北美红雀”, “斑点猫鸟”, “灰猫鸟”, “黄胸歌美洲鹀”, “东方红尾鸫”, “查克威尔威多”, “勃兰特鸬鹚”, “红脸鸬鹚”, “远洋鸬鹚”, “铜牛鸟”, “亮牛鸟”, “棕旋木莺”, “美洲乌鸦”, “鱼鸦”, “黑嘴杜鹃”, “红树杜鹃”, “黄嘴杜鹃”, “灰顶玫瑰雀”, “紫雀”, “北榄仙鹟”, “阿卡迪亚捕蝇鸟”, “大冠鹟”, “小鹟”, “橄榄侧鹟”, “剪翅鹟”, “朱红鹟”, “黄腹鹟”, “军舰鸟”, “北风鸦”, “赤膀鸭”, “美洲金翅雀”, “欧洲金翅雀”, “船尾椋鸟”, “角䴙䴘”, “长菊头鹬”, “枕菊部䴙䴘”, “西部䴙䴘”, “蓝色蜡嘴鸟”, “黄腹蜡嘴鸟”, “松蜡嘴鸟”, “玫瑰胸蜡嘴鸟”, “鸽鸽鸥”, “加州鸥”, “冰翼鸥”, “黑脚鸥”, “银鸥”, “象牙鸥”, “环嘴鸥”, “板翼鸥”, “西部鸥”, “安娜蜂鸟”, “红喉蜂鸟”, “棕蜂鸟”, “绿紫耳”, “长尾贼鹰”, “庞巴利贼鹰”, “蓝鸦”, “佛罗里达鸦”, “绿鸦”, “暗眼灯草鹀”, “热带王鹟”, “灰王鹟”, “环带翠鸟”, “绿翠鸟”, “派群翠鸟”, “环颈翠鸟”, “白胸翠鸟”, “红腿三趾鸥”, “角百灵”, “太平洋潜鸟”, “绿头鸭”, “西部草地百灵”, “冠秋沙鸭”, “赤胸秋沙鸭”, “知更鸟”, “夜鹰”, “克拉克的花栗鼠”, “白胸鳾”, “巴尔的摩椋鸟”, “头巾椋鸟”, “果园椋鸟”, “斯科特椋鸟”, “炉鹛”, “棕鹈”, “白鹈”, “西部啸喜鹊”, “赛氏啸鸫”, “美洲鹨”, “尖嘴夜鹰”, “角蒲鹫”, “普通鸦”, “白颈鸦”, “美洲红尾鹞”, “庚科考科克斯”, “红尾伯劳”, “大灰伯劳”, “白德麻雀”, “黑喉麻雀”, “布氏麻雀”, “尖嘴麻雀”, “白腹麻雀”, “家麻雀”, “田麻雀”, “狐麻雀”, “蚱蝉麻雀”, “哈里斯麻雀”, “亨斯洛麻雀”, “勒康德麻雀”, “林肯麻雀”, “纳尔逊尖尾麻雀”, “沙麻雀”, “海边麻雀”, “宋麻雀”, “树麻雀”, “夜麻雀”, “白冠麻雀”, “白喉麻雀”, “斑点椋鸟”, “崖燕”, “谷仓燕”, “悬崖燕”, “树燕”, “朱雀”, “夏季红雀”, “北极燕鸥”, “黑燕鸥”, “里海燕鸥”, “普通燕鸥”, “优雅燕鸥”, “福斯特燕鸥”, “小燕鸥”, “带尾鹛”, “棕色刺莺”, “鼠莺”, “黑顶莺”, “蓝头莺”, “费城莺”, “红眼莺”, “唱歌莺”, “白眼莺”, “黄喉莺”, “海湾胸莺”, “黑白莺”, “黑喉蓝莺”, “蓝翅莺”, “加拿大莺”, “角胸莺”, “天蓝莺”, “栗侧莺”, “金翅莺”, “兜帽莺”, “肯塔基莺”, “玉带莺”, “悲莺”, “野莺”, “纳什维尔莺”, “冕黄莺”, “棕榈莺”, “松莺”, “草原莺”, “金水莺”, “斯旺氏莺”, “田纳西莺”, “威尔逊莺”, “蠕虫吃莺”, “黄莺”, “北方水莺”, “路易斯安那水莺”, “波西米亚蜡嘴雀”, “雪松蜡嘴雀”, “美洲三趾啄木鸟”, “黑背啄木鸟”, “红腹啄木鸟”, “红冠啄木鸟”, “红头啄木鸟”, “绒毛啄木鸟”, “比威克鹪鹩”, “仙人掌鹪鹩”, “卡罗来纳鹪鹩”, “家用鹪鹩”, “沼泽鹪鹩”, “岩石鹪鹩”, “冬鹪鹩”, “普通黄喉”]

在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入BirdData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\BirdDetection\datasets\BirdData\images\train
val: E:\MyCVProgram\BirdDetection\datasets\BirdData\images\val

nc: 200
names: ['Black_footed_Albatross', 'Laysan_Albatross', 'Sooty_Albatross', 'Groove_billed_Ani', 'Crested_Auklet', 'Least_Auklet', 'Parakeet_Auklet', 'Rhinoceros_Auklet', 'Brewer_Blackbird', 'Red_winged_Blackbird', 'Rusty_Blackbird', 'Yellow_headed_Blackbird', 'Bobolink', 'Indigo_Bunting', 'Lazuli_Bunting', 'Painted_Bunting', 'Cardinal', 'Spotted_Catbird', 'Gray_Catbird', 'Yellow_breasted_Chat', 'Eastern_Towhee', 'Chuck_will_Widow', 'Brandt_Cormorant', 'Red_faced_Cormorant', 'Pelagic_Cormorant', 'Bronzed_Cowbird', 'Shiny_Cowbird', 'Brown_Creeper', 'American_Crow', 'Fish_Crow', 'Black_billed_Cuckoo', 'Mangrove_Cuckoo', 'Yellow_billed_Cuckoo', 'Gray_crowned_Rosy_Finch', 'Purple_Finch', 'Northern_Flicker', 'Acadian_Flycatcher', 'Great_Crested_Flycatcher', 'Least_Flycatcher', 'Olive_sided_Flycatcher', 'Scissor_tailed_Flycatcher', 'Vermilion_Flycatcher', 'Yellow_bellied_Flycatcher', 'Frigatebird', 'Northern_Fulmar', 'Gadwall', 'American_Goldfinch', 'European_Goldfinch', 'Boat_tailed_Grackle', 'Eared_Grebe', 'Horned_Grebe', 'Pied_billed_Grebe', 'Western_Grebe', 'Blue_Grosbeak', 'Evening_Grosbeak', 'Pine_Grosbeak', 'Rose_breasted_Grosbeak', 'Pigeon_Guillemot', 'California_Gull', 'Glaucous_winged_Gull', 'Heermann_Gull', 'Herring_Gull', 'Ivory_Gull', 'Ring_billed_Gull', 'Slaty_backed_Gull', 'Western_Gull', 'Anna_Hummingbird', 'Ruby_throated_Hummingbird', 'Rufous_Hummingbird', 'Green_Violetear', 'Long_tailed_Jaeger', 'Pomarine_Jaeger', 'Blue_Jay', 'Florida_Jay', 'Green_Jay', 'Dark_eyed_Junco', 'Tropical_Kingbird', 'Gray_Kingbird', 'Belted_Kingfisher', 'Green_Kingfisher', 'Pied_Kingfisher', 'Ringed_Kingfisher', 'White_breasted_Kingfisher', 'Red_legged_Kittiwake', 'Horned_Lark', 'Pacific_Loon', 'Mallard', 'Western_Meadowlark', 'Hooded_Merganser', 'Red_breasted_Merganser', 'Mockingbird', 'Nighthawk', 'Clark_Nutcracker', 'White_breasted_Nuthatch', 'Baltimore_Oriole', 'Hooded_Oriole', 'Orchard_Oriole', 'Scott_Oriole', 'Ovenbird', 'Brown_Pelican', 'White_Pelican', 'Western_Wood_Pewee', 'Sayornis', 'American_Pipit', 'Whip_poor_Will', 'Horned_Puffin', 'Common_Raven', 'White_necked_Raven', 'American_Redstart', 'Geococcyx', 'Loggerhead_Shrike', 'Great_Grey_Shrike', 'Baird_Sparrow', 'Black_throated_Sparrow', 'Brewer_Sparrow', 'Chipping_Sparrow', 'Clay_colored_Sparrow', 'House_Sparrow', 'Field_Sparrow', 'Fox_Sparrow', 'Grasshopper_Sparrow', 'Harris_Sparrow', 'Henslow_Sparrow', 'Le_Conte_Sparrow', 'Lincoln_Sparrow', 'Nelson_Sharp_tailed_Sparrow', 'Savannah_Sparrow', 'Seaside_Sparrow', 'Song_Sparrow', 'Tree_Sparrow', 'Vesper_Sparrow', 'White_crowned_Sparrow', 'White_throated_Sparrow', 'Cape_Glossy_Starling', 'Bank_Swallow', 'Barn_Swallow', 'Cliff_Swallow', 'Tree_Swallow', 'Scarlet_Tanager', 'Summer_Tanager', 'Artic_Tern', 'Black_Tern', 'Caspian_Tern', 'Common_Tern', 'Elegant_Tern', 'Forsters_Tern', 'Least_Tern', 'Green_tailed_Towhee', 'Brown_Thrasher', 'Sage_Thrasher', 'Black_capped_Vireo', 'Blue_headed_Vireo', 'Philadelphia_Vireo', 'Red_eyed_Vireo', 'Warbling_Vireo', 'White_eyed_Vireo', 'Yellow_throated_Vireo', 'Bay_breasted_Warbler', 'Black_and_white_Warbler', 'Black_throated_Blue_Warbler', 'Blue_winged_Warbler', 'Canada_Warbler', 'Cape_May_Warbler', 'Cerulean_Warbler', 'Chestnut_sided_Warbler', 'Golden_winged_Warbler', 'Hooded_Warbler', 'Kentucky_Warbler', 'Magnolia_Warbler', 'Mourning_Warbler', 'Myrtle_Warbler', 'Nashville_Warbler', 'Orange_crowned_Warbler', 'Palm_Warbler', 'Pine_Warbler', 'Prairie_Warbler', 'Prothonotary_Warbler', 'Swainson_Warbler', 'Tennessee_Warbler', 'Wilson_Warbler', 'Worm_eating_Warbler', 'Yellow_Warbler', 'Northern_Waterthrush', 'Louisiana_Waterthrush', 'Bohemian_Waxwing', 'Cedar_Waxwing', 'American_Three_toed_Woodpecker', 'Pileated_Woodpecker', 'Red_bellied_Woodpecker', 'Red_cockaded_Woodpecker', 'Red_headed_Woodpecker', 'Downy_Woodpecker', 'Bewick_Wren', 'Cactus_Wren', 'Carolina_Wren', 'House_Wren', 'Marsh_Wren', 'Rock_Wren', 'Winter_Wren', 'Common_Yellowthroat']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/BirdData/data.yaml', epochs=300, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.82,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Cape_May_Warbler_0108_163108.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款鸟类智能检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的200种鸟类智能检测与识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于跳蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.跳蛛算法4.实验参数设定5.算法结果6.参考文献7.MA…

如何使用树莓派Bookworm系统中配置网络的新方法NetworkManager

树莓派在 10 月新出的 Bookworm 版本系统中,将使用多年的 dhcpcd 换成了 NetworkManager(以前是在rasp-config中可选),这是因为 Raspberry Pi OS 使用的是 Debian 内核(和 Ubuntu 一样),所以树莓…

持续集成交付CICD:Linux 部署 Jira 9.12.1

目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave (从节点) jira9.12.1…

Java经典框架之Spring

Java经典框架之Spring Java 是第一大编程语言和开发平台。它有助于企业降低成本、缩短开发周期、推动创新以及改善应用服务。如今全球有数百万开发人员运行着超过 51 亿个 Java 虚拟机,Java 仍是企业和开发人员的首选开发平台。 课程内容的介绍 1. Spring简介 2.…

kubernetes集群 应用实践 kafka部署

kubernetes集群 应用实践 kafka部署 零.1、环境说明 零.2、kafka架构说明 zookeeper在kafka集群中的作用 一、Broker注册 二、Topic注册 三、Topic Partition选主 四、生产者负载均衡 五、消费者负载均衡 一、持久化存储资源准备 1.1 创建共享目录 [rootnfsserver ~]# mkdir -…

springcloud-gateway-2-鉴权

目录 一、跨域安全设置 二、GlobalFilter实现全局的过滤与拦截。 三、GatewayFilter单个服务过滤器 1、原理-官方内置过滤器 2、自定义过滤器-TokenAuthGatewayFilterFactory 3、完善TokenAuthGatewayFilterFactory的功能 4、每一个服务编写一个或多个过滤器&#xff0c…

Centos安装vsftpd:centos配置vsftpd,ftp报200和227错误

一、centos下载安装vsftpd(root权限) 1、下载安装 yum -y install vsftpd 2、vsftpd的配置文件 /etc/vsftpd.conf 3、备份原来的配置文件 sudo cp /etc/vsftpd.conf /etc/vsftpd.conf.backup 4、修改配置文件如下:vi /etc/vsftpd.conf …

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器 背景 ExoPlayer与Media3的能力结合,为Android应用程序播放多媒体内容提供了强大的解决方案。在本教程中,我们将介绍如何设置带有Media3的ExoPlayer来支持使用M3U8 URL进行直播流。此外&#x…

【数据结构一】初始Java集合框架(前置知识)

Java中的数据结构 Java语言在设计之初有一个非常重要的理念便是:write once,run anywhere!所以Java中的数据结构是已经被设计者封装好的了,我们只需要实例化出想使用的对象,便可以操作相应的数据结构了,本篇…

锯齿云服务器租赁使用教程

首先登陆锯齿云账号 网盘上传数据集与代码 随后我们需要做的是将所需要的数据集与代码上传到网盘(也可以直接在租用服务器后将数据集与代码传到服务器的硬盘上,但这样做会消耗大量时间,造成资源浪费) 点击工作空间:…

【Python】基于flaskMVT架构与session实现博客前台登录登出功能

目录 一、MVT说明 1.Model层 2.View层 3.Template层 二、功能说明 三、代码框架展示 四、具体代码实现 models.py 登录界面前端代码 博客界面前端代码(profile.html) main.py 一、MVT说明 MVT架构是Model-View-Template的缩写,是…

基于 Editor.js 开发富文本编辑器库

开始 Editor.js 提供了简单而直观的用户界面,根据需求可以灵活添加自定义的编辑工具,通过插件扩展功能 Editorjs 使用 js 开发,脱离框架依赖,因此可以基于它封装富文本编辑器,用于 Vue 和 React 项目 editor-js-com…

电化学仿真的基础知识笔记

1 概述 电化学反应是一种特殊的化学反应,其能量转移形式为化学能和电能之间互相转换。根据能量转换方向,可分为两类: 原电池(Galvanic cells):将化学能转化为电能,对外放电电解槽(…

2024 年 22 款顶级免费数据恢复软件比较 [Windows 和 Mac]

适用于 Windows 和 Mac 用户的最佳数据恢复软件下载列表和比较,可快速恢复丢失的数据、已删除的文件、照片或格式化的分区数据: 数据恢复软件是一种从任何存储介质恢复丢失文件的应用程序。它可以恢复由于病毒攻击、硬盘故障或任何其他原因而意外删除或…

Hadoop入门学习笔记——四、MapReduce的框架配置和YARN的部署

视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 四、MapReduce的框架配置和YARN的部署4.1. 配置MapReduce…

nn.LSTM个人记录

简介 nn.LSTM参数 torch.nn.lstm(input_size, "输入的嵌入向量维度,例如每个单词用50维向量表示,input_size就是50"hidden_size, "隐藏层节点数量,也是输出的嵌入向量维度"num_layers, "lstm 隐层的层数,默认…

02_算法分析

02_算法分析 0.1 算法的时间复杂度分析0.1.1 函数渐近增长概念:输入规模n>2时,算法A1的渐近增长小于算法B1 的渐近增长随着输入规模的增大,算法的常数操作可以忽略不计测试二:随着输入规模的增大,与最高次项相乘的常…

【计数DP】牛客小白月赛19

登录—专业IT笔试面试备考平台_牛客网 题意 思路 首先做法一定是计数 dp 然后状态设计,先设 dp[i] 然后看影响决策的因素:两边的火焰情况,那就 dp[i][0/1][0/1]表示 前 i 个,该位有无火焰,该位右边有无火焰的方案数…

单片机的RTC获取网络时间

理解网络同步校准RTC的原理需要考虑NTP、SNTP、RTC这三个关键组件的作用和交互。下面详细解释这个过程: 1. NTP(Network Time Protocol): 协议目的:NTP是用于同步计算机和设备时钟的协议。它通过在网络上与时间服务器通…

为什么react call api in cDidMount

为什么react call api in cDM 首先,放到constructor或者cWillMount不是语法错误 参考1 参考2 根据上2个参考,总结为: 1、官网就是这么建议的: 2、17版本后的react 由于fiber的出现导致 cWM 会调用多次! cWM 方法已…