【数据结构】最短路径算法实现(Dijkstra(迪克斯特拉),FloydWarshall(弗洛伊德) )

news2025/1/18 5:47:41

文章目录

  • 前言
  • 一、Dijkstra(迪克斯特拉)
    • 1.方法:
    • 2.代码实现
  • 二、FloydWarshall(弗洛伊德)
    • 1.方法
    • 2.代码实现
  • 完整源码


前言

最短路径问题:从在带权有向图G中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小。
单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图
中每个结点v ∈ V v∈Vv∈V的最短路径

一、Dijkstra(迪克斯特拉)

1.方法:

针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时
为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径
的结点集合,每次从Q 中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S
中,对u 的每一个相邻结点v 进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u
的代价与u 到v 的代价之和是否比原来s 到v 的代价更小,若代价比原来小则要将s 到v 的代价更新
为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经
查找过一遍并确定了最短路径, Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所以该算法使用的是贪心策略。

核心就是从当前选入的顶点当中去找其直接相连的最小的边,然后用这个最小边相连的另一个顶点为起点,找与其直接相连边中最小的边(eg:与s直接相连的为t,y。最小的边为5,即y顶点,其为s到y的最短距离,然后以y为起点,与y直接相连的有t,x,z。最小的边为2即z点,y到z最短为2,所以s到z最短为7,以此类推,直到所有点都被当过起点后结束)
在这里插入图片描述

2.代码实现

void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			//dist存的src到其他点的最短路径
			// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			dist.resize(n, MAX_W);
			pPath.resize(n, -1);

			dist[srci] = 0;//自己到自己距离为0
			pPath[srci] = srci;

			// 已经确定最短路径的顶点集合
			vector<bool> S(n, false);

			for (size_t j = 0; j < n; ++j)
			{
				 
				int u = srci;//u为当前最短路径顶点
				W min = MAX_W;//min为起始点到u的距离
				for (size_t i = 0; i < n; ++i)
				{
					if (S[i] == false && dist[i] < min)
					{
						u = i;
						min = dist[i];
					}
				}


				//找到与当前起始点直接相连的最短路径的顶点后
				//将其位置置为true表明已经选入
				S[u] = true;
				// 松弛算法:更新一遍u连接的所有边,看是否能更新出更短连接路径
				for (size_t v = 0; v < n; ++v)
				{
					// 如果srci->u + u->k 比 srci->k更短 则进行更新
					if (S[v] == false && _matrix[u][v] != MAX_W
						&& dist[u] + _matrix[u][v] < dist[v])
					{
						dist[v] = dist[u] + _matrix[u][v];
						pPath[v] = u;
					}
				}
			}
		}


//打印路径
void PrintShortPath(const V& src, const vector<W>& dist, const vector<int>& pPath) {
	
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			for (size_t i = 0; i < n; i++) {
				if (i != srci) {
					vector<int>path;
					//path为src到其他顶点路径
					size_t parenti = i;
					while (parenti != srci) {
						path.push_back(parenti);
						parenti = pPath[parenti];
					}
					path.push_back(srci);
					//需要反转一下,因为我们从s->x->v
					//是从v的父亲为x再推出x的父亲为s才结束的
					reverse(path.begin(), path.end());

					for (auto index : path) {
						cout << _vertexs[index] << "->";
					}
					cout << "权值和:" << dist[i] << endl;
				}
			}
		 }

Dijkstra算法存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路
径的最短路径。

二、FloydWarshall(弗洛伊德)

多源最短路径:Floyd-Warshall算法是解决任意两点间的最短路径的一种算法。

1.方法

Floyd算法考虑的是一条最短路径的中间节点,即简单路径p={v1,v2,…,vn}上除v1和vn的任意节
点。
设k是p的一个中间节点,那么从i到j的最短路径p就被分成i到k和k到j的两段最短路径p1,p2。p1
是从i到k且中间节点属于{1,2,…,k-1}取得的一条最短路径。p2是从k到j且中间节点属于{1,
2,…,k-1}取得的一条最短路径。

核心将中间经过的k当成所经过s->…->j中间经过的所有中间顶点集合中的一个,把中间的所有顶点看成k。

在这里插入图片描述

在这里插入图片描述

2.代码实现

void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
		{
			size_t n = _vertexs.size();
			vvDist.resize(n);
			vvpPath.resize(n);

			// 初始化权值和路径矩阵
			for (size_t i = 0; i < n; ++i)
			{
				vvDist[i].resize(n, MAX_W);
				vvpPath[i].resize(n, -1);
			}
			//vvpPath[i][j]表示i->j,j的父亲为i




			// 直接相连的边更新一下
			//把目前已知直接相连的边放入vvDist中,并更新vvpPath[i][j]
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (_matrix[i][j] != MAX_W)
					{
						vvDist[i][j] = _matrix[i][j];
						vvpPath[i][j] = i;
					}

					if (i == j)
					{
						vvDist[i][j] = W();
					}
				}
			}

			 
			// 最短路径的更新i-> {其他顶点} ->j
			//这里要进行k次的原因是因为我们所有结点都有可能
			//成为src与dst的中间结点,所以要考虑所有情况
			for (size_t k = 0; k < n; ++k)
			{
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						// k 作为的中间点尝试去更新i->j的路径
						if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W
							&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
						{
							vvDist[i][j] = vvDist[i][k] + vvDist[k][j];

							 

							vvpPath[i][j] = vvpPath[k][j];
							//因为这里k实际上是中间顶点集合
							// 找跟j相连的上一个邻接顶点
							// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k
							// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是x
						}
					}
				}

				// 打印权值和路径矩阵观察数据
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						if (vvDist[i][j] == MAX_W)
						{
							//cout << "*" << " ";
							printf("%3c", '*');
						}
						else
						{
							//cout << vvDist[i][j] << " ";
							printf("%3d", vvDist[i][j]);
						}
					}
					cout << endl;
				}
				cout << endl;

				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						//cout << vvParentPath[i][j] << " ";
						printf("%3d", vvpPath[i][j]);
					}
					cout << endl;
				}
				cout << "=================================" << endl;
			}
		}
	 
	};

完整源码

如果对Graph这些代码不太熟悉的小伙伴可以参考我之前写的【数据结构】图的创建(邻接矩阵,邻接表)以及深度广度遍历(BFS,DFS)

namespace matrix {
	//V为顶点类型,W为边权值类型,MAX_W为权值最大值也就是无效值
	//Direction用来判断是不是有向图,false为无向图
	template<class V,class W,W  MAX_W=INT_MAX,bool Direction=false>
	class Graph {
	public:
		Graph() = default;
		Graph(const V* a, size_t n) {
			_vertexs.reserve(n);
			for (size_t i = 0; i < n; i++) {
				_vertexs.push_back(a[i]);
				_indexMap[a[i]] = i;
				//将顶点存入_vertexs,下标映射存进map
			}

			_matrix.resize(n);
			for (size_t i = 0; i < _matrix.size(); i++) {
				_matrix[i].resize(n, MAX_W);
				//邻接矩阵默认初始值为无效值
			}
		}

		size_t GetVertexIndex(const V& v) {
			//获得对应顶点在数组中的下标
			auto it = _indexMap.find(v);
			if (it != _indexMap.end()) {
				return it->second;
				//有这个顶点返回其下标
			}
			else {
				throw("顶点不存在");
				return -1;
			}
		}

		void _AddEdge(size_t srci, size_t dsti, const W& w) {
			//存入权值
			_matrix[srci][dsti] = w;
			if (Direction == false) {
				_matrix[dsti][srci] = w;
				//无向图要两个方向都存
			}
		}

		void AddEdge(const V& src, const V& dst, const W& w) {
			//添加边与顶点的关系。从src到dst方向的关系
			size_t srci = GetVertexIndex(src);
			size_t dsti = GetVertexIndex(dst);
			//先获取其对应的下标
			_AddEdge(srci, dsti, w);
		}

		void Print() {
			for (size_t i = 0; i < _vertexs.size(); i++) {
				cout << "[" << i << "]" << "->" << _vertexs[i] << endl;
			}//打印顶点集
			cout << endl;


			//打印邻接矩阵
			for (size_t i = 0; i < _matrix.size(); i++) {
				cout << i << " ";
				for (size_t j = 0; j < _matrix[i].size(); j++) {
					if (_matrix[i][j] == MAX_W) {
						printf("%4c", '*');
					}
					else {
						printf("%4d", _matrix[i][j]);
					}
				}
				cout << endl;
			 }
		}

	 
	 


		void BFS(const V& src) {
			size_t srci = GetVertexIndex(src);
			queue<int>q;
			q.push(srci);
			vector<bool>visited(_vertexs.size(), false);
			visited[srci] = true;//标记这个顶点被访问过了
			int levelSize = 1;
			while (!q.empty()) {
				//levelSize为当前层的大小
				for (size_t i = 0; i < levelSize; i++) {
					int front = q.front();
					q.pop();
					cout << front << ":" << _vertexs[front]<<" ";

					for (size_t i = 0; i < _vertexs.size(); i++) {
						if (_matrix[front][i] != MAX_W && visited[i] == false) {
							q.push(i);
							visited[i] = true;//标记这个顶点被访问过了
						}
					}
				}
				levelSize = q.size();//更新当前层的数量
				cout << endl;
			}
			cout << endl;
		}


		void _DFS(size_t srci, vector<bool>& visited) {
			cout << srci << ":" << _vertexs[srci] << endl;
			visited[srci] = true;//标记这个顶点被访问过了
			for (size_t i = 0; i < _vertexs.size(); i++) {
				if (_matrix[srci][i] != MAX_W && visited[i] == false) {
					_DFS(i, visited);
				}
			}
		}

		void DFS(const V& src) {
			size_t srci = GetVertexIndex(src);
			vector<bool>visited(_vertexs.size(), false);

			_DFS(srci, visited);
		}


 

	 
		 
		
		
		 

		typedef Graph<V, W, MAX_W, false> Self;

		//建立边的类,保存边的两个顶点下标和权值
		struct Edge {
			size_t _srci;
			size_t _dsti;
			W _w;

			Edge(size_t srci,size_t dsti,W w)
				:_srci(srci),
				_dsti(dsti),
				_w(w)
			{}

			bool operator>(const Edge& e)const {
				return _w > e._w;//小根堆判断
			}

		};

		W Kruskal(Self& minTree)
		{
			//minTree为最小生成树,刚开始什么都没有
			size_t n = _vertexs.size();

			//初始化最小生成树
			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}


			//我们每次选边从全部边中选出最小的(保证不构成回路的情况)
			//所以我们可以考虑用小根堆来存入边,这样每次方便找最小的
			priority_queue<Edge, vector<Edge>, greater<Edge>> minque;
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (i < j && _matrix[i][j] != MAX_W)
					{
						//将所有有效值边放进堆中
						minque.push(Edge(i, j, _matrix[i][j]));
					}
				}
			}

			 
			int size = 0;
			W totalW = W();
			UnionFindSet ufs(n); 

			// 选出n-1条边
			while (!minque.empty())
			{
				//取出最小边
				Edge min = minque.top();
				minque.pop();

				if (!ufs.InSet(min._srci, min._dsti))//判断是否成环
				{
				
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] <<":"<<min._w << endl;
					//不成环就将当前边放入最小生成树当中
					    
					minTree._AddEdge(min._srci, min._dsti, min._w);
					//并把这两个顶点放入同一个并查集集合当中
					ufs.Union(min._srci, min._dsti);
					++size;
					totalW += min._w;//权值总和增加
				}
				else
				{
					//cout << "构成环:";
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
				 
			}

			if (size == n - 1)//边数选够说明最小生成树
				//创建成功
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}

		W Prim(Self& minTree, const W& src)
		{
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();

			minTree._vertexs = _vertexs;
			minTree._indexMap = _indexMap;
			minTree._matrix.resize(n);
			for (size_t i = 0; i < n; ++i)
			{
				minTree._matrix[i].resize(n, MAX_W);
			}

			 

			vector<bool> X(n, false);
			vector<bool> Y(n, true);
			X[srci] = true;
			Y[srci] = false;

			 
			// 从X->Y集合中连接的边里面选出最小的边
			priority_queue<Edge, vector<Edge>, greater<Edge>> minq;

			// 先把srci连接的边添加到小根堆中
			for (size_t i = 0; i < n; ++i)
			{
				if (_matrix[srci][i] != MAX_W)
				{
					minq.push(Edge(srci, i, _matrix[srci][i]));
				}
			}

			cout << "Prim开始选边" << endl;
			size_t size = 0;//选出边的数量
			W totalW = W();//权值之和
			while (!minq.empty())
			{
				Edge min = minq.top();
				minq.pop();

				// 最小边的目标点也在X集合,则构成环
				if (X[min._dsti])
				{
					//cout << "构成环:";
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
				}
				else
				{
					//从Y中选出顶点
					minTree._AddEdge(min._srci, min._dsti, min._w);//加入最小生成树
					//cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
					X[min._dsti] = true;
					Y[min._dsti] = false;
					++size;
					totalW += min._w;
					if (size == n - 1)
						break;

					//把新加入顶点相关的边都放入小根堆中
					for (size_t i = 0; i < n; ++i)
					{
						if (_matrix[min._dsti][i] != MAX_W && Y[i])
						{
							minq.push(Edge(min._dsti, i, _matrix[min._dsti][i]));
						}
					}
				}
			}

			if (size == n - 1)
			{
				return totalW;
			}
			else
			{
				return W();
			}
		}


		void PrintShortPath(const V& src, const vector<W>& dist, const vector<int>& pPath) {
	
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			for (size_t i = 0; i < n; i++) {
				if (i != srci) {
					vector<int>path;
					//path为src到其他顶点路径
					size_t parenti = i;
					while (parenti != srci) {
						path.push_back(parenti);
						parenti = pPath[parenti];
					}
					path.push_back(srci);
					//需要反转一下,因为我们从s->x->v
					//是从v的父亲为x再推出x的父亲为s才结束的
					reverse(path.begin(), path.end());

					for (auto index : path) {
						cout << _vertexs[index] << "->";
					}
					cout << "权值和:" << dist[i] << endl;
				}
			}
		 }



		void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)
		{
			//dist存的src到其他点的最短路径
			// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
			size_t srci = GetVertexIndex(src);
			size_t n = _vertexs.size();
			dist.resize(n, MAX_W);
			pPath.resize(n, -1);

			dist[srci] = 0;//自己到自己距离为0
			pPath[srci] = srci;

			// 已经确定最短路径的顶点集合
			vector<bool> S(n, false);

			for (size_t j = 0; j < n; ++j)
			{
				 
				int u = srci;//u为当前最短路径顶点
				W min = MAX_W;//min为起始点到u的距离
				for (size_t i = 0; i < n; ++i)
				{
					if (S[i] == false && dist[i] < min)
					{
						u = i;
						min = dist[i];
					}
				}


				//找到与当前起始点直接相连的最短路径的顶点后
				//将其位置置为true表明已经选入
				S[u] = true;
				// 松弛算法:更新一遍u连接的所有边,看是否能更新出更短连接路径
				for (size_t v = 0; v < n; ++v)
				{
					// 如果srci->u + u->k 比 srci->k更短 则进行更新
					if (S[v] == false && _matrix[u][v] != MAX_W
						&& dist[u] + _matrix[u][v] < dist[v])
					{
						dist[v] = dist[u] + _matrix[u][v];
						pPath[v] = u;
					}
				}
			}
		}
		void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
		{
			size_t n = _vertexs.size();
			vvDist.resize(n);
			vvpPath.resize(n);

			// 初始化权值和路径矩阵
			for (size_t i = 0; i < n; ++i)
			{
				vvDist[i].resize(n, MAX_W);
				vvpPath[i].resize(n, -1);
			}
			//vvpPath[i][j]表示i->j,j的父亲为i




			// 直接相连的边更新一下
			//把目前已知直接相连的边放入vvDist中,并更新vvpPath[i][j]
			for (size_t i = 0; i < n; ++i)
			{
				for (size_t j = 0; j < n; ++j)
				{
					if (_matrix[i][j] != MAX_W)
					{
						vvDist[i][j] = _matrix[i][j];
						vvpPath[i][j] = i;
					}

					if (i == j)
					{
						vvDist[i][j] = W();
					}
				}
			}

			 
			// 最短路径的更新i-> {其他顶点} ->j
			//这里要进行k次的原因是因为我们所有结点都有可能
			//成为src与dst的中间结点,所以要考虑所有情况
			for (size_t k = 0; k < n; ++k)
			{
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						// k 作为的中间点尝试去更新i->j的路径
						if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W
							&& vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
						{
							vvDist[i][j] = vvDist[i][k] + vvDist[k][j];

							 

							vvpPath[i][j] = vvpPath[k][j];
							//因为这里k实际上是中间顶点集合
							// 找跟j相连的上一个邻接顶点
							// 如果k->j 直接相连,上一个点就k,vvpPath[k][j]存就是k
							// 如果k->j 没有直接相连,k->...->x->j,vvpPath[k][j]存就是x
						}
					}
				}

				// 打印权值和路径矩阵观察数据
				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						if (vvDist[i][j] == MAX_W)
						{
							//cout << "*" << " ";
							printf("%3c", '*');
						}
						else
						{
							//cout << vvDist[i][j] << " ";
							printf("%3d", vvDist[i][j]);
						}
					}
					cout << endl;
				}
				cout << endl;

				for (size_t i = 0; i < n; ++i)
				{
					for (size_t j = 0; j < n; ++j)
					{
						//cout << vvParentPath[i][j] << " ";
						printf("%3d", vvpPath[i][j]);
					}
					cout << endl;
				}
				cout << "=================================" << endl;
			}
		}
	private:
		vector<V>_vertexs;//顶点集合
		map<V, int>_indexMap;//存顶点与数组下标的映射关系
		vector<vector<W>>_matrix;//邻接矩阵
	};



 }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331301.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ubuntu 常用命令之 gunzip 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 gunzip是一个在Ubuntu系统下用于解压缩文件的命令。它主要用于解压.gz格式的文件。这个命令是gzip命令的反向操作&#xff0c;gzip用于压缩文件&#xff0c;而gunzip则用于解压缩文件。 gunzip命令的参数有 -c 或 --stdout 或 -…

智能优化算法应用:基于原子轨道搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于原子轨道搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于原子轨道搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.原子轨道搜索算法4.实验参数设定…

Java语法---使用sort进行排序

目录 一、升序 二、降序 &#xff08;1&#xff09;类实现接口 &#xff08;2&#xff09;匿名内部类 三、自定义排序规则 四、集合中的sort排序 &#xff08;1&#xff09;升序 &#xff08;2&#xff09;降序 &#xff08;3&#xff09;自定义排序 一、升序 升序排…

IDEA——IDEA中文件内容对比功能的使用,如何快速定位看文件内容是否产生变化!!!

文件内容对比 一、对比磁盘中的某一文件二、直接对比两个文件 总结 本篇文章介绍一下如何在IDEA中对比两个文件的内容是否相同。 一、对比磁盘中的某一文件 选中一个文件&#xff0c;右键->点击Compare With 选择要对比的文件即可 二、直接对比两个文件 同时选中两个文…

基于协同过滤的电影评论数据分析与推荐系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目介绍 随着社会的发展&#xff0c;人们生活水平的提高&#xff0c;欣赏电影逐渐成为人们闲暇时的主要娱乐方式之一。本文电影推荐系统是为了给顾客提供方便快捷的热门电影推荐以及查询电影资讯而建立的&…

C# 跨越配置

跨越配置1 项目框架 .NET Framework 1.web.config配置 在system.webServer节点中添httpProtocol子节点 Access-Control-Allow-Origin值为“*”” <httpProtocol><customHeaders><add name"Access-Control-Allow-Origin" value"*" /><…

redis 从0到1完整学习 (六):Hash 表数据结构

文章目录 1. 引言2. redis 源码下载3. dict 数据结构4. 哈希表扩容与 rehash5. 参考 1. 引言 前情提要&#xff1a; 《redis 从0到1完整学习 &#xff08;一&#xff09;&#xff1a;安装&初识 redis》 《redis 从0到1完整学习 &#xff08;二&#xff09;&#xff1a;red…

MATLAB - 估计滤波器(Estimation Filters)

系列文章目录 前言 本篇文章翻译自官网&#xff0c;部分下标有问题&#xff0c;请自行分辨。 一、背景介绍 1.1 估算系统 对于许多自主系统&#xff08;autonomous systems&#xff09;来说&#xff0c;了解系统状态&#xff08;system state&#xff09;是设计任何应用的先决…

Linux命令-查看内存、GC情况及jmap 用法

查看进程占用内存、CPU使用情况 1、查看进程 #jps 查看所有java进程 #top 查看cpu占用高进程 输入m &#xff1a;根据内存排序 topMem: 16333644k total, 9472968k used, 6860676k free, 165616k buffers Swap: 0k total, 0k used, 0k free, 6…

【网络编程】网络通信基础——简述TCP/IP协议

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程的一点学习心得&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 一、ip地…

全网最全ChatGPT指令大全prompt

全网最全的ChatGPT大全提示词&#xff0c;大家可以进行下载。 AIGC ChatGPT 职场案例 AI 绘画 与 短视频制作 PowerBI 商业智能 68集 数据库Mysql 8.0 54集 数据库Oracle 21C 142集 Office 2021实战应用 Python 数据分析实战&#xff0c; ETL Informatica 数据仓库案例实战 E…

The Cherno C++笔记02

目录 Part 06 How the C Compiler Works 1.编译过程 2.C并不关心文件 3.翻译单元&#xff08;Translation Unit&#xff09; 4. 实际用代码感受一下编译过程 4.1 预处理 4.1.1 预处理的本质 4.1.2 预处理后的.i文件 4.1.3 骚操作 4.2 .asm文件&#xff08;汇编语言源文…

手把手教你在飞书中搭建机器人

前言 大家好&#xff0c;我是潇潇雨声。飞书是一款在国内广受欢迎的企业内部管理和协同工具&#xff0c;同时也可以作为一个强大的个人知识管理工具。在本文中&#xff0c;我将帮助你迅速创建一个飞书对话机器人&#xff0c;并嵌入 chatGPT 的功能。这个机器人可以直接回答你的…

贪吃蛇(七)方向和屏幕刷新

由于用户玩游戏的时候&#xff0c;程序需要一边接收用户的输入&#xff0c;一边需要刷新屏幕&#xff0c;此时就需要引用线程来解决此问题。 实现思路 linux线程库pthread&#xff0c;只需要创建pthread_t 类型的线程变量&#xff0c;然后将线程变量与函数进行绑定即可&#…

HFish蜜罐搭建及简单使用

一、HFish蜜罐 HFish是一款社区型免费蜜罐&#xff0c;侧重企业安全场景&#xff0c;从内网失陷检测、外网威胁感知、威胁情报生产三个场景出发&#xff0c;为用户提供可独立操作且实用的功能&#xff0c;通过安全、敏捷、可靠的中低交互蜜罐增加用户在失陷感知和威胁情报领域的…

一篇文章带你搞定CTFMice基本操作

CTF比赛是在最短时间内拿到最多的flag&#xff0c;mice必须要有人做&#xff0c;或者一支战队必须留出一块时间专门写一些mice&#xff0c;web&#xff0c;pwn最后的一两道基本都会有难度&#xff0c;这时候就看mice的解题速度了&#xff01; 说实话&#xff0c;这是很大一块&…

JavaEE进阶学习:Spring MVC 程序开发

1.什么是 Spring MVC Spring Web MVC 是基于Servlet API 构建的原始 Web 框架&#xff0c;从一开始就包含在Spring 框架中。它的正式名称 “Spring Web MVC” 来自其源模块的名称(Spring-webmvc)&#xff0c;但它通常被称为“Spring MVC”。 从上述定义我们可以得出两个关键信…

blender径向渐变材质-着色编辑器

要点&#xff1a; 1、用纹理坐标中的物体输出连接映射中的矢量输入 2、物体选择一个空坐标&#xff0c;将空坐标延z轴上移一段距离 3、空坐标的大小要缩放到和要添加材质的物体大小保持一致

【雷达原理】雷达测速原理及实现方法

一、雷达测速原理 1.1 多普勒频率 当目标和雷达之间存在相对运动时&#xff0c;若雷达发射信号的工作频率为&#xff0c;则接收信号的频率为&#xff0c;其中为多普勒频率。将这种由于目标相对于辐射源运动而导致回波信号的频率发生变化的现象称为多普勒效应。 如图1-1所示&a…

猫头虎博客:SSH连接失败ssh: connect to host port 22: Connection refused”解决大揭秘

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…