【雷达原理】雷达测速原理及实现方法

news2025/1/18 8:13:50

一、雷达测速原理

1.1 多普勒频率

 当目标和雷达之间存在相对运动时,若雷达发射信号的工作频率为eq?f_%7B0%7D,则接收信号的频率为eq?f_%7B0%7D+f_%7Bd%7D,其中eq?f_%7Bd%7D为多普勒频率。将这种由于目标相对于辐射源运动而导致回波信号的频率发生变化的现象称为多普勒效应。

如图1-1所示,照射到目标上的波形具有间隔为eq?%5Clambda(波长)的等相位波前,靠近雷达的目标导致回波信号的等相位波前相互靠近(回波信号的波长eq?%7B%5Clambda%7D%27较短),即eq?%5Clambda%20%3E%7B%5Clambda%20%7D%27;反之,远离雷达的目标导致回波信号的等相位波前相互扩展(回波信号的波长eq?%7B%5Clambda%7D%27较长),即eq?%5Clambda%20%3C%7B%5Clambda%20%7D%27

所以有以下结论:当目标靠近雷达运动时,多普勒频率为正;当目标远离雷达运动时,多普勒频率为负。

25ff4e353e8549b8aecd7a672cd35243.png
图1-1 多普勒效应

下面将给出多普勒频率的计算公式,其证明过程可以参考书本上的推导。

设目标的径向速度为eq?v,则目标回波信号的多普勒频率为:

eq?f_%7Bd%7D%3D%5Cfrac%7B2v%7D%7B%5Clambda%20%7D,目标靠近雷达

eq?f_%7Bd%7D%3D%5Cfrac%7B-2v%7D%7B%5Clambda%20%7D,目标远离雷达

1.2 与速度有关的概念

通过发射两个时间间隔为Tc的线性调频信号,则接收到的每个脉冲对应的距离维FFT将在同一个位置具有峰值,但是峰值对应的相位不同。这两个峰值具有相位差,其与目标相对雷达运动产生的多普勒频率相关。

所以,当目标以速度v运动时,对应的相位差为:

eq?%5Comega%20%3D2%5Cpi%20f_%7Bd%7DT_%7Bc%7D%3D%5Cfrac%7B4%5Cpi%20vT_%7Bc%7D%7D%7B%5Clambda%7D                 (1.2-1)

利用式(1.2-1)可计算出运动目标的速度。

(1) 最大测量速度

0597dfa2880347c3a9db9e2fc0caed00.png

只有相位差满足eq?%5Cleft%20%7C%20%5Comega%20%5Cright%20%7C%20%3C%5Cpi,才可以清楚的测量目标的速度,否则会出现速度模糊。

\left | \omega \right | <\pi\Rightarrow \frac{4\pi vT_{c}}{\lambda}<\pi \Rightarrow v<\frac{\lambda}{4T_{c}}             (1.2-2)

由此可得,当雷达以脉冲重复周期Tc发射信号时,可测量目标的最大不模糊速度为:

v_{max} = \frac{\lambda}{4T_{c}}                                             (1.2-3)

(2) 速度分辨率

当雷达前方有两个位置相近而速度不同(v1,v2)的目标时,我们可以发射一系列等间隔的线性调频信号对其进行测量,则距离维FFT的峰值位置相同,但这些峰值对应的离散序列有两个旋转向量(w1,w2),即回波信号的角频率。

帧:将N个等间隔周期的线性调频信号称为一帧;

多普勒维FFT:一帧脉冲间进行FFT,也称为速度维FFT;

雷达的速度分辨能力取决于多普勒维FFT的频率分辨率,两个速度差为△v的目标回波信号的角频率间隔为△w:

\Delta \omega =\frac{4\pi \Delta vT_{c}}{\lambda }                                          (1.2-4)

由离散傅里叶变换的特性可知,要分辨这两个角频率,需要满足:

\Delta \omega >\frac{2\pi }{N}                                                  (1.2-5)

联合式(1.2-4)和式(1.2-5)可得:

\Delta v > \frac{\lambda }{2NT_{c}}                                                  (1.2-6)

因而,速度分辨率为:

v_{res} = \frac{\lambda }{2NT_{c}}                                                    (1.2-7)

(3) 速度点精度

设一帧的脉冲数为N,对其进行多普勒维FFT的点数为N_{fft},则完成FFT的运算后,速度维上的每一个点代表的速度为:

V_{point}=\frac{v_{max} }{\frac{N_{fft}}{2}}= \frac{\lambda}{2N_{fft}T_{c}}                        (1.2-8)

N_{fft}=N,则有:

V_{point}= \frac{\lambda}{2NT_{c}}                                               (1.2-9)

二、 动目标检测(MTD)技术

6aafaaa3f1e54d8b9048831890c5af35.png
图2-1   MTI滤波器特性

MTI滤波器虽然可以抑制杂波信号,但无法区分具有不同速度的运动目标回波信号,导致雷达无法实现对具有相同距离不同速度的运动目标的检测。动目标检测(Moving Target Detection,MTD)技术采用一组相邻且部分重叠的滤波器组,覆盖目标的整个多普勒频率范围,从每个滤波器的输出,获取对应目标的多普勒频率,从而得到运动目标的速度。

c529aa4a7f464b58bdb0d34dac580eed.png
图2-2  MTD滤波器特性

在工程应用中,通常采用(MTI+MTD)的方式,先利用MTI滤波器将雷达探测到的杂波及低速运动目标滤除,再采用MTD滤波器将不同速度的运动目标进行区分。

2.1 MTD算法原理

MTD算法的实现方式有两类:时域上采用FIR滤波器,频域上采用离散傅里叶变换(DFT)。对脉冲压缩后的数据,在同一距离单元的多个脉冲采用FFT进行处理,可得到不同速度的运动目标。

具有N个输出的横向滤波器,经过各重复周期的不同加权求和后,可以作为N个相邻的窄带滤波器组。其原理性结构如图2-3所示。

每个滤波器的权值可表示为:

N%7D

其中,i为滤波器的下标,k为同一距离单元的脉冲序列的下标,i=0,1,2,N-1,k=0,1,2,N-1。

可以得到MTD滤波器组的输入eq?x%28i%29与输出eq?y%28k%29的对应关系为:

N%7D%2Ck%3D0%2C1%2C2%2C...%2CN-1

上式与DFT的计算公式是等效的,所以可以用DFT实现MTD滤波器组。当N的取值为2的正整数次幂时,则可以采用DFT的快速算法——快速傅里叶变换(FFT)进行计算。

2.2 MTD算法仿真

设定3个目标,其距离分别为300米,600米,900米,速度分别为0m/s,10m/s,-15m/s,RSC分别为0.1㎡,1㎡,5㎡,利用上述目标参数产生模拟回波信号,对该信号进行二维FFT,即先在距离维上进行FFT,再对其多普勒维进行FFT,计算结果如图目标幅度值与目标的RCS及距离有关。

图2-3   二维FFT后的计算结果

三、MATLAB仿真代码

clc;
clear;
close all;

%% LFM信号参数
B = 25e6;               % 带宽
T_chirp = 100e-6;       % 脉冲宽度
PRF = 1/T_chirp;        % 脉冲重复频率
u = B/T_chirp;          % 调频斜率
fs = 2*B;               % 采样率
NumADC = T_chirp*fs;       % 单个脉冲的采样点数
NumChirp = 128;             % 脉冲数
c = physconst('LightSpeed');        % 光速
f0 = 77e9;                          % 载频
Lambda = c/f0;                      % 波长

R_max = fs*c/(2*u);                 % 最大测量距离
V_max = Lambda*PRF/4;               % 最大测量速度

%% 目标参数
tarNum = 3;
tar_R0 = [300,600,900];           % 目标距离
tar_V0 = [0,10,-15];           % 目标速度
Rcs = [0.1,1,5];

%% 模拟信号
Tt = linspace(0,T_chirp*NumChirp,NumADC*NumChirp);
Phase_t = @(f0,u,t) 2*pi*(f0*t+1/2*u*t.^2);        % LFM信号的相位表达式

Signal_Tx = exp(1j*Phase_t(f0,u,Tt));           % 发射信号
Signal_Rx = 0;
for kk = 1:tarNum
    tar_R = tar_R0(kk)+tar_V0(kk)*Tt;
    tao = 2*tar_R/c;                % 目标回波的时延
    Ar = Rcs(kk)./(tar_R.^4);       % 目标回波幅度
    Signal_Rx = Signal_Rx + Ar.*exp(-1j*Phase_t(f0,u,(Tt-tao)));        % 接收信号
end

% 混频
Signal_Mix = Signal_Tx.*Signal_Rx;

rawData = reshape(Signal_Mix,NumADC,NumChirp);
clear Signal_Tx;
clear Signal_Rx;
clear Signal_Mix;

%% 距离维FFT
Nfft1 = 4096;            % FFT点数
R_point = (fs/Nfft1)*c/(2*u);    % 距离点精度
delta_R = c/(2*B);              % 距离分辨率

win1 = hamming(NumADC);       % 加窗
fft_Data = zeros(Nfft1,NumChirp);
for ii = 1:NumChirp
    fft_Data(:,ii) = fft(rawData(:,ii).*win1,Nfft1);
end

x1 = (1:NumChirp)';
y1 = R_point*(0:Nfft1-1)';
figure(101);
mesh(x1,y1,mag2db(abs(fft_Data)));xlabel('脉冲数');ylabel('距离维');title('1维FFT');
ylim([0 2000]);


%% 速度维FFT
win2 = hamming(NumChirp);       % 加窗
Nfft2 = NumChirp;
fft2D_Data = zeros(Nfft1,Nfft2);
for ii = 1:Nfft1
    fft2D_Data(ii,:) = fft(fft_Data(ii,:).*win2',Nfft2);
end

V_point = Lambda*PRF/(2*Nfft2);
figure(103);
mesh(x1,y1,mag2db(abs(fft2D_Data)));xlabel('速度维');ylabel('距离维');title('MTD');
ylim([0 2000]);

参考文献

[1]陈伯孝, 等. 现代雷达系统分析与设计[M]. 西安:西安电子科技大学出版社, 2012.9.

[2] Introduction to mmwave Sensing:FMCW Radars.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1331266.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

猫头虎博客:SSH连接失败ssh: connect to host port 22: Connection refused”解决大揭秘

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

Linux bridge开启hairpin模拟测试macvlan vepa模式

看到网上介绍可以通过Linux bridge 开启hairpin方式测试macvlan vepa模式&#xff0c;但是没有找到详细资料。我尝试测试总提示错误信息&#xff0c;无法实现&#xff0c;经过几天的研究&#xff0c;我总算实现模拟测试&#xff0c;记录如下&#xff1a; 参考 1.Linux Macvla…

Angular 11到升级到 Angular 16

日新月异&#xff0c;与时俱进… 随着Angular版本不断更新&#xff0c;再看所开发的项目版本仍然是Angular 11&#xff0c;于是准备升级 截止发博日最版本是 v17.1.0&#xff0c;考虑到稳定性因素决定升级到v16版本 一&#xff1a;查看 升级指南 二&#xff1a;按照指南&…

Ubuntu 常用命令之 cal 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 cal命令在Ubuntu系统下用于显示日历。它可以显示任何特定月份或整个年份的日历。 cal命令的参数如下 -1&#xff1a;只显示当前月份的日历。-3&#xff1a;显示前一个月、当前月和下一个月的日历。-s&#xff1a;指定日历的开始…

力扣思维题——寻找重复数

题目链接&#xff1a;https://leetcode.cn/problems/find-the-duplicate-number/description/?envTypestudy-plan-v2&envIdtop-100-liked 这题的思维难度较大。一种是利用双指针法进行计算环的起点&#xff0c;这种方法在面试里很难说清楚&#xff0c;也很难想到。大致做…

MyBatis中延迟加载,全局和局部的开启使用与关闭

文章目录 MyBatis中延迟加载&#xff0c;全局和局部的开启使用与关闭1、问题提出2、延迟加载和立即加载延迟加载立即加载 3、三种对应的表关系中的加载4、打开全局延迟加载&#xff08;实现一对一的延迟加载&#xff09;5、实现一对多的延迟加载&#xff08;将上面设置的全局延…

Flink 数据序列化

为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火&#xff0c;大多数技术组件都是运行在JVM上的&#xff0c;Flink也是运行在JVM上&#xff0c;基于JVM的数据分析引擎都需要将大量的数据存储在内存中&#xff0c;这就不得不面临JVM的一些问题&#xff0c;比如Ja…

thinkphp+vue+mysql酒店客房管理系统 b1g8z

本系统包括前台界面、用户界面和管理员界面、员工界面。在前台界面里游客和用户可以浏览客房信息、公告信息等&#xff0c;用户可以预定客房&#xff0c;在用户中心界面里&#xff0c;用户可以管理预定信息&#xff0c;管理员负责用户预定的审核以及客房的发布、用户的入住等。…

装饰者模式学习

装饰器&#xff08;Decorator&#xff09;模式的定义&#xff1a;指在不改变现有对象结构的情况下&#xff0c;动态地给该对象增加一些职责&#xff08;即增加其额外功能&#xff09;的模式&#xff0c;它属于对象结构型模式。 装饰器模式的主要优点有&#xff1a; 装饰器是继…

基于Java (spring-boot)的在线考试管理系统

一、项目介绍 系统功能说明 1、系统共有管理员、老师、学生三个角色&#xff0c;管理员拥有系统最高权限。 2、老师拥有考试管理、题库管理、成绩管理、学生管理四个模块。 3、学生可以参与考试、查看成绩、试题练习、留言等功能 二、作品包含 三、项目技术 后端语言&#xff1…

【电路笔记】-串联电容器

串联电容器 文章目录 串联电容器1、概述2、示例13、示例34、总结 当电容器以菊花链方式连接在一条线上时&#xff0c;它们就串联在一起。 1、概述 对于串联电容器&#xff0c;流过电容器的充电电流 ( i C i_C iC​ ) 对于所有电容器来说都是相同的&#xff0c;因为它只有一条…

Unity中Shader缩放矩阵

文章目录 前言一、直接相乘缩放1、在属性面板定义一个四维变量&#xff0c;用xyz分别控制在xyz轴上的缩放2、在常量缓存区申明该变量3、在顶点着色器对其进行相乘&#xff0c;来缩放变换4、我们来看看效果 二、使用矩阵乘法代替直接相乘缩放的原理1、我们按如下格式得到缩放矩阵…

Koordinator 支持 K8s 与 YARN 混部,小红书在离线混部实践分享

作者&#xff1a;索增增&#xff08;小红书&#xff09;、宋泽辉&#xff08;小红书&#xff09;、张佐玮&#xff08;阿里云&#xff09; 背景介绍 Koordinator 是一个开源项目&#xff0c;基于阿里巴巴在容器调度领域多年累积的经验孵化诞生&#xff0c;目前已经支持了 K8s…

LZ码基本概念

LZ码是一种无损压缩算法&#xff0c;由Lempel和Ziv两位计算机科学家提出并命名。它是一种基于字典的压缩方法&#xff0c;可以将数据有效地压缩存储&#xff0c;同时实现高效的解压缩。 LZ码的基本概念是利用字典来存储先前遇到的字符串&#xff0c;然后用较短的代表符号来表示…

【性能优化】MySql数据库查询优化方案

阅读本文你的收获 了解系统运行效率提升的整体解决思路和方向学会MySQl中进行数据库查询优化的步骤学会看慢查询、执行计划、进行性能分析、调优 一、问题&#xff1a;如果你的系统运行很慢&#xff0c;你有什么解决方案&#xff1f; ​关于这个问题&#xff0c;我们通常首先…

mac上使用 Downie 下载网页视频

在今天的数字时代&#xff0c;视频内容在互联网上的传播变得更加普遍和便捷。然而&#xff0c;有时我们可能希望将网页上的视频保存在本地&#xff0c;以便离线观看或与他人分享。Downie 是一款强大而简便的工具&#xff0c;专门设计用于下载网页上的视频内容。本文将介绍 Down…

IP技术在网络安全防护中的重要意义

随着互联网的普及&#xff0c;网络安全问题日益凸显。作为网络通信中的重要标识&#xff0c;IP地址在网络安全防护中扮演着关键角色。近日&#xff0c;一则关于IP技术在网络安全防护措施的新闻引起了广泛关注。 据报道&#xff0c;IP技术已成为网络安全防护的重要手段之一。通过…

idea structure视图介绍

作用 idea的Structure视图可以辅助查看代码结构 如何呼出Structure视图&#xff1f; Alt 7 Ctrl F12 侧边栏点Structure 我的常用配置 1、选Show Toolbar&#xff0c;便于使用功能按钮 2、使用Float视图&#xff0c;悬浮于窗口表面&#xff0c;可以使用 ShiftEsc来退出…

学习使用echarts图表中formatter的用法,格式化数字金额,控制x轴、y轴展示长度

学习使用echarts图表中formatter的用法&#xff0c;格式化数字金额&#xff0c;控制x轴、y轴展示长度 控制金额长度两位小数&#xff0c;并去除多余.00效果图 控制文字长度完整代码 控制金额长度 series: [{name: ,type: bar,sort: none,label: { //饼图图形上的文本…

DFS与BFS算法总结

知识概览 DFS、BFS都可以对整个问题空间进行搜索&#xff0c;搜索的结构都是像一棵树。DFS会尽可能往深搜&#xff0c;当搜索到叶节点时就会回溯。而BFS每一次只会扩展一层。 DFS与BFS的区别&#xff1a; 搜索方式数据结构空间复杂度性质DFS栈O(h)&#xff0c;其中h为搜索空间…