记一次生产慢sql索引优化及思考

news2025/1/19 17:04:59

一 问题重现

夜黑风高的某一晚,突然收到一条运营后台数据库慢sql的报警,耗时竟然达到了60s。

看了一下,还好不是很频繁,内心会更加从容排查问题,应该是特定条件下没有走到索引导致,如果频繁出现慢查询,可能会将数据库连接池打满,导致数据库不可用,从而导致应用不可用。

二 问题排查

报警自带定位慢sql语句,这个是很早就上线的一条sql语句,下面对sql语句进行了简化:

select * from xxx where gear_id=xxx and examine=xxx order by id desc limit 10,这是个简单的根据流量池gear_id查询,按照主键id倒序进行分页查询10条数据的语句。

在examine=2时查询速度很快,但是在examine=3时,查询速度极慢,然后分别在不同的examine下查看执行计划,得到的执行计划都是一致的。

查看执行计划,发现possible_keys中有idx_gear_id索引,但是实际用到的key却是PRIMARY,并且extra中明确用了where条件进行数据过滤。到现在就明白了这个sql是在主键聚簇索引上进行扫描,然后用where语句条件进行过滤,时间耗费在这了。

这个也解释了为什么examine在不同状态下的耗时不一样,取决于where过滤扫描的行数,扫描行数越多,执行越慢,但同一个问题是都没走到我们已有的索引idx_gear_id。

当单表数量较小时,无论有没有索引,或者走主键索引扫描或者普通索引都很快,很容易忽略这些问题,此时的表现就是你好,我好,大家好,然后随着数据量的增大,当达到千万级别或者亿级时,慢查询的问题就凸显出来了。

三 原理剖析

为什么mysql会选择这个不合适的主键聚簇索引?

以常用的InnoDb存储引擎为例,看一下聚簇索引和非聚簇索引查询区别:

聚簇索引:通常就是按照每张表的主键构造一颗B+树,叶子节点中存放的就是整张表的行记录数据,即数据和主键都在索引上

非聚簇索引:表的二级索引字段(比如唯一索引,联合索引等)构造的一颗B+树,叶子节点存储的是Key字段+主键值,即非聚集索引的叶节仍然是索引节点,但它有一个指向最终数据索引的指针。

聚簇索引查询原理:

非聚簇索引查询原理(二级索引查询):

由以上的索引数据结构可以看出,因为聚簇索引将索引和数据保存在同一个B+树中,因此通常从聚簇索引中获取数据比非聚簇索引更快,而非聚簇索引在获取到叶子节点的主键后,需要再次查询主键索引,即回表查询行记录数据。当然如果查询的列只是索引字段,比如查询姓名和年龄,可以创建联合索引,即索引存储的内容即为需要查询的内容,这种查询速度往往比主键索引更快,这种索引查询又称为覆盖索引。

什么是回表?

将以上的索引数据映射成常见的用户表user的索引为例,上面的聚簇索引就是以id字段为主键的索引,name字段为非聚簇索引,还有age等其他表字段是非索引字段,示例sql:select * from user where id = 1; 这条 SQL 语句就不需要回表。原因是根据主键的查询方式,则只需要搜索 id聚簇索引这棵 B+ 树,就可以查到对应的数据。

但当我们使用非聚簇索引 name 这个索引来查询 name = b 的记录时就要用到回表。原因是通过 name 这个二级索引查询方式,则需要先搜索 name 索引树,然后得到主键 id,即PK的值为 1,再到主键id聚簇索引树再搜索一次。这种根据二级索引查询到主键id,再根据主键id查询主键聚簇索引的过程就称为回表。

回到为什么mysql会选择这个不合适的主键聚簇索引问题本身,mysql执行器认为使用二级索引查出来的数据太多了,还需要基于磁盘做临时存储进行排序,然后排序取出10条,然后进行回表查询字段,性能可能会很差,所以采用了直接采用了按顺序扫描主键聚簇索引,和where条件gear_id=xxx and examine=xxx进行对比,最多放10条即可,这种情况就是数量小的时候没问题,但是当数据量大的时候,就需要一直扫描所有的数据,直到查到符合where条件的10条数据为止,同时耗时也急剧增长。

四 解决问题

为了快速解决问题,可以采用强制索引force index,即在写sql语句时指定使用具体的索引

sql示例 :select * from xxx force index (idx_gear_id) where gear_id=xxx and examine=3 order by id desc limit 10,强制使用idx_gear_id这个索引。

以下为使用强制索引的执行计划:

可以看到实际使用的索引key就是idx_gear_id,执行耗时在几百毫秒,运营后台的业务人员完全可接受。

五 长期优化

由于表的数据越来越多,查询条件错综复杂,还有用json字段查询问题,决定将数据异构到es查询,将json字段打平,es天然支持复杂的查询条件,查询响应更快。

es数据同步方案:

在ES数据同步链路中,通过京东科技中间件DTS监听数据库的binlog,将索引字段(查询条件字段)及业务唯一id写入ES。

在业务运营查询时,根据复杂的查询条件,先去ES查询,将业务唯一id查出,再根据业务唯一id去DB中查询业务明细数据,同时解决了业务查询的复杂性和查询性能。

文章转载自:京东云技术团队

原文链接:https://www.cnblogs.com/jingdongkeji/p/17910709.html

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1330988.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu22.04+ROS2推荐匹配的gazebo版本

放大以后看到: 可以看到ros2推荐使用版本是humble-----匹配的是Ubuntu22.04LTS -------匹配gazebo Harmonic

Windows漏洞利用开发——利用SEH绕过GS保护

实验6 Windows漏洞利用开发 6.1实验名称 Windows漏洞利用开发 6.2实验目的 学习windows漏洞利用开发,使用kali linux相关工具对windows内目标程序进行漏洞利用 6.3实验步骤及内容 第二阶段:利用SEH绕过GS保护 了解GS编译选项,SHE异常处…

【多模态对话】《颠覆性创新:多模态对话与精准区域分割 - VPGTrans NExT-Chat》学习笔记

【OpenMMLab社区开放麦讲座】《颠覆性创新:多模态对话与精准区域分割 - VPGTrans & NExT-Chat》 1 VPGTrans 1.1 研究问题 1.1.1 模态对齐预训练开销很大:训练时间长 解决方案:迁移已有的VPG(比如BLIP-2 OPT 27B上的VPG) 1.2 训练技巧…

01背包详解,状态设计,滚动数组优化,通用问题求解

文章目录 0/1背包前言一、0/1背包的状态设计1、状态设计2、状态转移方程3、初始状态4、代码实现5、滚动数组优化二维优化为两个一维二维优化为一个一维,倒序递推 二、0/1背包的通用问题求最大值求最小值求方案数 0/1背包 前言 0/1包问题,作为动态规划问…

ESP32运行MicroPython——环境搭建

1、准备工作 硬件:ESP32-DevKitC V4 开发板、USB串口线 软件: flash_download_tool_3.9.5(乐鑫烧录工具)、官方下载地址 CP210x(USB驱动程序)、官方下载地址 ESP32_GENERIC-20231005-v1.21.0.bin&#xff…

将html转化成图片

如何将指定html内容转化成图片保存?这个问题很值得深思,实际应用中也很有价值。最直接的想法就是使用canvas,熟悉canvas的同学可以尝试一下。这里不做太多的说明,本文采用html2canvas库来实现。 html2canvas库的使用非常简单&…

JavaWeb笔记之SVN

一、版本控制 软件开发过程中 变更的管理; 每天的新内容;需要记录一下; 版本分支;整合到一起; 主要的功能对于文件变更的追踪; 多人协同开发的情况下,更好的管理我们的软件。 大型的项目;一个团队来进行开发; 1: 代码的整合 2: 代…

GPT2代码运行,个人文本生成助手,不依赖OpenAI API调用

0.前言: 感觉GPT很好玩,所以想要有个自己搭建GPT的写法,不依赖于OpenAI,需要翻墙太麻烦了,近日日本已经结合GPT4和机器,可以让他吓人,做出丰富的表情,如果自己训练的话,会塑造出什么样的机器人尚未可知…抱着好奇的心态,去github openai下载了个gpt2的模型来玩玩(其中遇到了许多…

arm汇编-补充-画图记忆 LDM/STM系列指令

说明 原始文章系列 https://azeria-labs.com/writing-arm-assembly-part-1/ 翻译-进作者的专栏可以翻到所有翻译 系列:https://zhuanlan.zhihu.com/p/109057983 系列:https://www.anquanke.com/post/id/86383 0x00 调试环境 使用arm架构的系统&#…

❀My学习Linux命令小记录之iperf❀

❀My学习Linux命令小记录之iperf❀ 目录 ❀My学习Linux命令小记录之iperf❀ ①功能说明: ②安装iperf: ③iperf的使用及参数介绍: ④注意事项: ⑤实例: iperf测试udp iperf测试tcp ①功能说明: i…

管理 Jenkins 详细指南

目录 系统配置 安全 状态信息 故障 排除 工具和操作 系统配置 系统,配置全局设置和路径,端口更改,下载地址等。 工具,配置工具、其位置和自动安装程序。 插件,添加、删除、禁用或启用可以扩展 Jenkins 功能的插…

Logback简介与配置详解

在开发和维护Spring Boot应用程序时,一个强大而灵活的日志框架是至关重要的。Spring Boot默认集成了Logback,一个高性能的Java日志框架。本文将介绍如何配置Logback以满足你的日志记录需求。 Logback简介 官方网址:https://logback.qos.ch/ …

【JMeter】JMeter控制RPS

一、前言 ​ RPS (Request Per Second)一般用来衡量服务端的吞吐量,相比于并发模式,更适合用来摸底服务端的性能。我们可以通过使用 JMeter 的常数吞吐量定时器来限制每个线程的RPS。对于RPS,我们可以把他理解为我们的TPS,我们就不…

2023年12月GESP Python三、四级编程题真题解析

三、2023年12月GESP Python三级编程题 【三级编程题1】 【试题名称】&#xff1a;小猫分鱼 【问题描述】 海滩上有一堆鱼&#xff0c;N只小猫来分。第一只小猫把这堆鱼平均分为N份&#xff0c;多了i<N条鱼&#xff0c;这只小猫把多的i条鱼扔入海中&#xff0c;拿走了一份…

DBA-MySql面试问题及答案-上

文章目录 1.什么是数据库?2.如何查看某个操作的语法?3.MySql的存储引擎有哪些?4.常用的2种存储引擎&#xff1f;6.可以针对表设置引擎吗&#xff1f;如何设置&#xff1f;6.选择合适的存储引擎&#xff1f;7.选择合适的数据类型8.char & varchar9.Mysql字符集10.如何选择…

Stable Diffusion 基本原理

1 Diffusion Model的运作过程 输入一张和我们所需结果图尺寸一致的噪声图像&#xff0c;通过Denoise模块逐步减少noise&#xff0c;最终生成我们需要的效果图。 图中Denoise模块虽然是同一个&#xff0c;但是它会根据不同step的输入图像和代表noise严重程度的参数选择denoise的…

【接口测试】Postman(三)-变量与集合

一、变量 ​ 变量这个概念相信大家都不陌生&#xff0c;因此在这里我们不介绍了。主要说一下在Postman中有哪几类变量&#xff0c;主要包括以下四类&#xff1a; Global&#xff08;全局&#xff09; Environment&#xff08;环境&#xff09; Local&#xff08;本地&#xf…

安装gnvm,nodejs,npm使用方法

安装gnvm,nodejs,npm使用方法 一、安装gnvm gnvm.exe下载地址&#xff1a; https://download.csdn.net/download/hsg77/88651752 http://ksria.com/gnvm/#download 二、配置gnvm环境变量 新建目录&#xff0c;如&#xff1a;d:/nodejs 并把gnvm.exe存储到此目录 并把d:/node…

【分布式技术专题】「授权认证体系」深度解析OAuth2.0协议的原理和流程框架实现指南(授权流程和模式)

深度解析OAuth2.0协议的原理和流程框架实现指南 背景介绍OAuth1.0协议访问令牌案例分析 OAuth2.0OAuth2.0与OAuth1.0 OAuth2.0协议体系的Roles角色OAuth定义了四个角色资源所有者资源服务器客户端授权服务器 传统的客户机-服务器身份验证模型的问题协议流程 认证授权类型授权码…

Python生成圣诞节词云-代码案例剖析【第17篇—python圣诞节系列】

文章目录 ❄️Python制作圣诞树词云-中文&#x1f42c;展示效果&#x1f338;代码&#x1f334;代码剖析 ❄️Python制作圣诞树词云-英文&#x1f42c;展示效果&#x1f338;代码&#x1f334;代码剖析 &#x1f385;圣诞节快乐&#xff01; ❄️Python制作圣诞树词云-中文 &a…