Java之LinkedList核心源码解读

news2025/1/31 8:55:24

LinkedList核心源码解读

LinkedList 是一个基于双向链表实现的集合类,经常被拿来和 ArrayList 做比较

双向链表

LinkedList 插入和删除元素的时间复杂度?
  • 头部插入/删除:只需要修改头结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。
  • 尾部插入/删除:只需要修改尾结点的指针即可完成插入/删除操作,因此时间复杂度为 O(1)。
  • 指定位置插入/删除:需要先移动到指定位置,再修改指定节点的指针完成插入/删除,因此需要移动平均 n/2 个元素,时间复杂度为 O(n)。
LinkedList 为什么不能实现 RandomAccess 接口?

RandomAccess 是一个标记接口,用来表明实现该接口的类支持随机访问(即可以通过索引快速访问元素)。由于 LinkedList 底层数据结构是链表,内存地址不连续,只能通过指针来定位,不支持随机快速访问,所以不能实现 RandomAccess 接口。

LinkedList 源码分析

这里以 JDK1.8 为例,分析一下 LinkedList 的底层核心源码。

LinkedList 的类定义如下:

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
  //...
}

LinkedList 继承了 AbstractSequentialList ,而 AbstractSequentialList 又继承于 AbstractList

阅读过 ArrayList 的源码我们就知道,ArrayList 同样继承了 AbstractList , 所以 LinkedList 会有大部分方法和 ArrayList 相似。

LinkedList 实现了以下接口:

  • List : 表明它是一个列表,支持添加、删除、查找等操作,并且可以通过下标进行访问。
  • Deque :继承自 Queue 接口,具有双端队列的特性,支持从两端插入和删除元素,方便实现栈和队列等数据结构。需要注意,Deque 的发音为 “deck” [dɛk],这个大部分人都会读错。
  • Cloneable :表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。
  • Serializable : 表明它可以进行序列化操作,也就是可以将对象转换为字节流进行持久化存储或网络传输,非常方便

LinkedList 类图

LinkedList 中的元素是通过 Node 定义的:

private static class Node<E> {
    E item;// 节点值
    Node<E> next; // 指向的下一个节点(后继节点)
    Node<E> prev; // 指向的前一个节点(前驱结点)

    // 初始化参数顺序分别是:前驱结点、本身节点值、后继节点
    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

初始化

LinkedList 中有一个无参构造函数和一个有参构造函数。

// 创建一个空的链表对象
public LinkedList() {
}

// 接收一个集合类型作为参数,会创建一个与传入集合相同元素的链表对象
public LinkedList(Collection<? extends E> c) {
    this();
    addAll(c);
}

插入元素

LinkedList 除了实现了 List 接口相关方法,还实现了 Deque 接口的很多方法,所以我们有很多种方式插入元素。

我们这里以 List 接口中相关的插入方法为例进行源码讲解,对应的是add() 方法。

add() 方法有两个版本:

  • add(E e):用于在 LinkedList 的尾部插入元素,即将新元素作为链表的最后一个元素,时间复杂度为 O(1)。
  • add(int index, E element):用于在指定位置插入元素。这种插入方式需要先移动到指定位置,再修改指定节点的指针完成插入/删除,因此需要移动平均 n/2 个元素,时间复杂度为 O(n)。
// 在链表尾部插入元素
public boolean add(E e) {
    linkLast(e);
    return true;
}

// 在链表指定位置插入元素
public void add(int index, E element) {
    // 下标越界检查
    checkPositionIndex(index);

    // 判断 index 是不是链表尾部位置
    if (index == size)
        // 如果是就直接调用 linkLast 方法将元素节点插入链表尾部即可
        linkLast(element);
    else
        // 如果不是则调用 linkBefore 方法将其插入指定元素之前
        linkBefore(element, node(index));
}

// 将元素节点插入到链表尾部
void linkLast(E e) {
    // 将最后一个元素赋值(引用传递)给节点 l
    final Node<E> l = last;
    // 创建节点,并指定节点前驱为链表尾节点 last,后继引用为空
    final Node<E> newNode = new Node<>(l, e, null);
    // 将 last 引用指向新节点
    last = newNode;
    // 判断尾节点是否为空
    // 如果 l 是null 意味着这是第一次添加元素
    if (l == null)
        // 如果是第一次添加,将first赋值为新节点,此时链表只有一个元素
        first = newNode;
    else
        // 如果不是第一次添加,将新节点赋值给l(添加前的最后一个元素)的next
        l.next = newNode;
    size++;
    modCount++;
}

// 在指定元素之前插入元素
void linkBefore(E e, Node<E> succ) {
    // assert succ != null;断言 succ不为 null
    // 定义一个节点元素保存 succ 的 prev 引用,也就是它的前一节点信息
    final Node<E> pred = succ.prev;
    // 初始化节点,并指明前驱和后继节点
    final Node<E> newNode = new Node<>(pred, e, succ);
    // 将 succ 节点前驱引用 prev 指向新节点
    succ.prev = newNode;
    // 判断尾节点是否为空,为空表示当前链表还没有节点
    if (pred == null)
        first = newNode;
    else
        // succ 节点前驱的后继引用指向新节点
        pred.next = newNode;
    size++;
    modCount++;
}

获取元素

LinkedList获取元素相关的方法一共有 3 个:

  1. getFirst():获取链表的第一个元素。
  2. getLast():获取链表的最后一个元素。
  3. get(int index):获取链表指定位置的元素。
// 获取链表的第一个元素
public E getFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return f.item;
}

// 获取链表的最后一个元素
public E getLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return l.item;
}

// 获取链表指定位置的元素
public E get(int index) {
  // 下标越界检查,如果越界就抛异常
  checkElementIndex(index);
  // 返回链表中对应下标的元素
  return node(index).item;
}

这里的核心在于 node(int index) 这个方法:

// 返回指定下标的非空节点
Node<E> node(int index) {
    // 断言下标未越界
    // assert isElementIndex(index);
    // 如果index小于size的二分之一  从前开始查找(向后查找)  反之向前查找
    if (index < (size >> 1)) {
        Node<E> x = first;
        // 遍历,循环向后查找,直至 i == index
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

get(int index)remove(int index) 等方法内部都调用了该方法来获取对应的节点。

从这个方法的源码可以看出,该方法通过比较索引值与链表 size 的一半大小来确定从链表头还是尾开始遍历。如果索引值小于 size 的一半,就从链表头开始遍历,反之从链表尾开始遍历。这样可以在较短的时间内找到目标节点,充分利用了双向链表的特性来提高效率

删除元素

LinkedList删除元素相关的方法一共有 5 个:

  1. removeFirst():删除并返回链表的第一个元素。
  2. removeLast():删除并返回链表的最后一个元素。
  3. remove(E e):删除链表中首次出现的指定元素,如果不存在该元素则返回 false。
  4. remove(int index):删除指定索引处的元素,并返回该元素的值。
  5. void clear():移除此链表中的所有元素。
// 删除并返回链表的第一个元素
public E removeFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return unlinkFirst(f);
}

// 删除并返回链表的最后一个元素
public E removeLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return unlinkLast(l);
}

// 删除链表中首次出现的指定元素,如果不存在该元素则返回 fals
public boolean remove(Object o) {
    // 如果指定元素为 null,遍历链表找到第一个为 null 的元素进行删除
    if (o == null) {
        for (Node<E> x = first; x != null; x = x.next) {
            if (x.item == null) {
                unlink(x);
                return true;
            }
        }
    } else {
        // 如果不为 null ,遍历链表找到要删除的节点
        for (Node<E> x = first; x != null; x = x.next) {
            if (o.equals(x.item)) {
                unlink(x);
                return true;
            }
        }
    }
    return false;
}

// 删除链表指定位置的元素
public E remove(int index) {
    // 下标越界检查,如果越界就抛异常
    checkElementIndex(index);
    return unlink(node(index));
}

这里的核心在于 unlink(Node<E> x) 这个方法:

E unlink(Node<E> x) {
    // 断言 x 不为 null
    // assert x != null;
    // 获取当前节点(也就是待删除节点)的元素
    final E element = x.item;
    // 获取当前节点的下一个节点
    final Node<E> next = x.next;
    // 获取当前节点的前一个节点
    final Node<E> prev = x.prev;

    // 如果前一个节点为空,则说明当前节点是头节点
    if (prev == null) {
        // 直接让链表头指向当前节点的下一个节点
        first = next;
    } else { // 如果前一个节点不为空
        // 将前一个节点的 next 指针指向当前节点的下一个节点
        prev.next = next;
        // 将当前节点的 prev 指针置为 null,,方便 GC 回收
        x.prev = null;
    }

    // 如果下一个节点为空,则说明当前节点是尾节点
    if (next == null) {
        // 直接让链表尾指向当前节点的前一个节点
        last = prev;
    } else { // 如果下一个节点不为空
        // 将下一个节点的 prev 指针指向当前节点的前一个节点
        next.prev = prev;
        // 将当前节点的 next 指针置为 null,方便 GC 回收
        x.next = null;
    }

    // 将当前节点元素置为 null,方便 GC 回收
    x.item = null;
    size--;
    modCount++;
    return element;
}

unlink() 方法的逻辑如下:

  1. 首先获取待删除节点 x 的前驱和后继节点;
  2. 判断待删除节点是否为头节点或尾节点:
    • 如果 x 是头节点,则将 first 指向 x 的后继节点 next
    • 如果 x 是尾节点,则将 last 指向 x 的前驱节点 prev
    • 如果 x 不是头节点也不是尾节点,执行下一步操作
  3. 将待删除节点 x 的前驱的后继指向待删除节点的后继 next,断开 x 和 x.prev 之间的链接;
  4. 将待删除节点 x 的后继的前驱指向待删除节点的前驱 prev,断开 x 和 x.next 之间的链接;
  5. 将待删除节点 x 的元素置空,修改链表长度。

unlink 方法逻辑

遍历链表

推荐使用for-each 循环来遍历 LinkedList 中的元素, for-each 循环最终会转换成迭代器形式。

LinkedList<String> list = new LinkedList<>();
list.add("apple");
list.add("banana");
list.add("pear");

for (String fruit : list) {
    System.out.println(fruit);
}


LinkedList 的遍历的核心就是它的迭代器的实现。

// 双向迭代器
private class ListItr implements ListIterator<E> {
    // 表示上一次调用 next() 或 previous() 方法时经过的节点;
    private Node<E> lastReturned;
    // 表示下一个要遍历的节点;
    private Node<E> next;
    // 表示下一个要遍历的节点的下标,也就是当前节点的后继节点的下标;
    private int nextIndex;
    // 表示当前遍历期望的修改计数值,用于和 LinkedList 的 modCount 比较,判断链表是否被其他线程修改过。
    private int expectedModCount = modCount;
    …………
}


下面我们对迭代器 ListItr 中的核心方法进行详细介绍。

我们先来看下从头到尾方向的迭代:

// 判断还有没有下一个节点
public boolean hasNext() {
    // 判断下一个节点的下标是否小于链表的大小,如果是则表示还有下一个元素可以遍历
    return nextIndex < size;
}
// 获取下一个节点
public E next() {
    // 检查在迭代过程中链表是否被修改过
    checkForComodification();
    // 判断是否还有下一个节点可以遍历,如果没有则抛出 NoSuchElementException 异常
    if (!hasNext())
        throw new NoSuchElementException();
    // 将 lastReturned 指向当前节点
    lastReturned = next;
    // 将 next 指向下一个节点
    next = next.next;
    nextIndex++;
    return lastReturned.item;
}


再来看一下从尾到头方向的迭代:

// 判断是否还有前一个节点
public boolean hasPrevious() {
    return nextIndex > 0;
}

// 获取前一个节点
public E previous() {
    // 检查是否在迭代过程中链表被修改
    checkForComodification();
    // 如果没有前一个节点,则抛出异常
    if (!hasPrevious())
        throw new NoSuchElementException();
    // 将 lastReturned 和 next 指针指向上一个节点
    lastReturned = next = (next == null) ? last : next.prev;
    nextIndex--;
    return lastReturned.item;
}


ArrayList 与 LinkedList 区别?
  • 是否保证线程安全: ArrayListLinkedList 都是不同步的,也就是不保证线程安全;
  • 底层数据结构:ArrayList 底层使用的是 Object 数组LinkedList 底层使用的是 双向链表 数据结构
  • 插入和删除是否受元素位置的影响:
    • ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。比如:执行add(E e)方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是 O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element)),时间复杂度就为 O(n)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。
    • LinkedList 采用链表存储,所以在头尾插入或者删除元素不受元素位置的影响(add(E e)addFirst(E e)addLast(E e)removeFirst()removeLast()),时间复杂度为 O(1),如果是要在指定位置 i 插入和删除元素的话(add(int index, E element)remove(Object o),remove(int index)), 时间复杂度为 O(n) ,因为需要先移动到指定位置再插入和删除。
  • 是否支持快速随机访问: LinkedList 不支持高效的随机元素访问,而 ArrayList(实现了 RandomAccess 接口) 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index)方法)。
  • 内存空间占用: ArrayList 的空间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1329670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

洛谷 NOIP2016 普及组 回文日期

这道题目本来是不难想思路的。。。。。。 然而我第一次做的时候改了蛮久才把代码完全改对&#xff0c;主要感觉还是不够细心&#xff0c;敲的时候也没注意见检查一些小错误&#xff0c;那么接下来不说废话&#xff0c;请看题干&#xff1a; 接下来请看输入输出的样例以及数据范…

基于Vite+Vue3 给项目引入Axios

基于ViteVue3 给项目引入Axios,方便与后端进行通信。 系列文章指路&#x1f449; 系列文章-基于Vue3创建前端项目并引入、配置常用的库和工具类 文章目录 安装依赖新建src/config/config.js 用于存放常用配置进行简单封装解决跨域问题调用尝试 安装依赖 npm install axios …

YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)

一、本文介绍 本文给大家带来的改进机制是MobileNetV3&#xff0c;其主要改进思想集中在结合硬件感知的网络架构搜索&#xff08;NAS&#xff09;和NetAdapt算法&#xff0c;以优化移动设备CPU上的性能。它采用了新颖的架构设计&#xff0c;包括反转残差结构和线性瓶颈层&…

Mac电脑上soucetree账户更改

在开发公司项目的时候遇到一个问题。soucetree提示需要输入已离职员工-张三的密码。 问题&#xff1a;Mac电脑使用souetree&#xff0c;拉取仓库代码提示需要输入其他员工密码。 解决&#xff1a; Mac电脑 SourceTree去掉之前的账户 1、前往文件路径 /Library/Application Su…

linux 中 C++的环境搭建以及测试工具的简单介绍

文章目录 makefleCMakegdb调试 与 coredumpValgrind 内存检测gtest 单元测试 makefile 介绍 安装 : sudo apt install make makefile 的规则: 举例说明 包括&#xff1a;目标文件 、 依赖文件 、 生成规则 使用 &#xff1a; make make clean CMake : CMake是一个…

深度解析LinkedList

LinkedList是Java集合框架中List接口的实现之一&#xff0c;它以双向链表的形式存储元素。与传统的数组相比&#xff0c;链表具有更高的灵活性&#xff0c;特别适用于频繁的插入和删除操作。让我们从底层实现开始深入了解这个强大的数据结构。 底层数据结构 LinkedList的底层数…

LTO-3 磁带机种草终于是用上了

跑来跑去&#xff0c;买了不少配件&#xff0c;终于是把这磁带机给用上了&#xff0c;已经备份好了300 多 GB 的数据。 我们用了 NAS 的数据压缩功能&#xff0c;把需要备份的文件用 NAS 压缩成一个 Zip 文件&#xff0c;如果你可以 tar 的话也行。 这样传输速度更快&#xf…

Android Studio各种Gradle常见报错问题及解决方案

大家好&#xff0c;我是咕噜铁蛋&#xff01;在开发Android应用程序时&#xff0c;我们可能会遇到各种Gradle错误。这些错误可能来自不同的原因&#xff0c;例如依赖项问题、配置错误、版本冲突等。今天我通过搜索整理了一下&#xff0c;在这篇文章中&#xff0c;我将分享一些常…

SpringIOC之BeanFactoryResolver

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

Canal使用详解

Canal介绍 Canal是阿里巴巴开发的MySQL binlog增量订阅&消费组件&#xff0c;Canal是基于MySQL二进制日志的高性能数据同步系统。在阿里巴巴集团中被广泛使用&#xff0c;以提供可靠的低延迟增量数据管道。Canal Server能够解析MySQL Binlog并订阅数据更改&#xff0c;而C…

python3 数据分析项目案例,用python做数据分析案例

本篇文章给大家谈谈python3 数据分析项目案例&#xff0c;以及用python做数据分析案例&#xff0c;希望对各位有所帮助&#xff0c;不要忘了收藏本站喔。 目录 一丶可视化绘图案例 1.曲线图 2.柱形图 3.点线图 4.3D散点图 5. 绘制漏斗图 6. 绘制词云图 二丶包/模块使用示例 (1)…

用Python处理PDF:拆分与合并PDF文档

PDF文档在信息共享和数据保存方面被广泛使用&#xff0c;处理PDF文档也成为常见需求。其中&#xff0c;合并和拆分PDF文档能够帮助我们更有效地管理PDF文档&#xff0c;使文档内容分布更合理。通过合并&#xff0c;可以将相关文档整合成一个文件&#xff0c;以便更好地组织和提…

蓝桥杯2019年10月青少组Python程序设计省赛真题

1:有n个人围成一个圈,按顺序排好号然后从第一个人开始报数(从1到3报数),报到3的人退出圈子,然后继续从1到3报数,直到最后留下一个人游戏结束,问最后留下的是原来第几号输人描迹:输人一个正整数n 输出描迹:输出最后留下的是原来的第几号 [样例输人] [样例输出] 2: 3、 […

P1883 函数

题目链接 P1883 函数 思路 举例 题目中的 F ( x ) F(x) F(x) 看起来很复杂&#xff0c;但由于每个 f ( x ) f(x) f(x) 的二次项系数 a a a 都不是负数&#xff0c;故 F ( x ) F(x) F(x) 是一个单谷函数。直接说出结论可能有些令人难以接受&#xff0c;不妨举出两个例子…

mysql忘记了密码

1.查找mysql的配置文件 find / -name my.cnf 2.编辑my.cnf vim /etc/my.cnf 3. 在最后一行添加skip-grant-tables跳过密码校验 4.检查mysql服务是否已正常启动 service mysqld status 5.修改完配置重启服务 systemctl restart msyqld 6.键入 msyql直接进入mysql mysql 7.进入my…

Qt制作定时关机小程序

文章目录 完成效果图ui界面ui样图 main函数窗口文件头文件cpp文件 引言 一般定时关机采用命令行模式&#xff0c;还需要我们计算在多久后关机&#xff0c;我们可以做一个小程序来定时关机 完成效果图 ui界面 <?xml version"1.0" encoding"UTF-8"?>…

Linux--Shell脚本应用实战

实验环境 随着业务的不断发展&#xff0c;某公司所使用的Linux服务器也越来越多。在系统管理和维护过程中&#xff0c;经 常需要编写一些实用的小脚本&#xff0c;以辅助运维工作&#xff0c;提高工作效率。 需求描述 > 编写一个名为getarp.sh的小脚本&#xff0c;记录局域…

Linux ContOS7 日志管理(rsyslog)

目录 01. rsyslog 记录日志程序 02.日志文件 03.日志等级 Linux 日志文件是记录 Linux 系统运行信息的文件。它们类似于人类的日记&#xff0c;记录了系统的各种活动&#xff0c;如用户登录、进程启动、错误消息等。 Linux 日志文件通常存储在 /var/log/ 目录中。该目录包含…

为实体服务器配置Ubuntu

简介 我们在使用虚拟机时&#xff0c;直接在网上找到镜像然后下载到本地&#xff0c;在VMware创建实例时将该iso文件作为镜像源然后进行基础配置就可以轻松安装配置好Linux虚拟机。 在为实体服务器安装Linux系统&#xff0c;同样的&#xff0c;我们也需要镜像源&#xff08;即…

【Qt之Quick模块】5. QML基本类型及示例用法

QML格式 QML基本类型 在 QML 中&#xff0c;有以下基本类型&#xff1a; int&#xff1a;整数类型。 Rectangle {function myFunction() {// 输出 debug 信息console.log("11 " (11));}Component.onCompleted: {myFunction();} }结果&#xff1a; 2. real&…