PyTorch随机数生成:torch.rand,torch.randn,torch.randind,torch.rand_like

news2025/2/3 0:44:25

在用PyTorch做深度学习开发过程中,时常用到随机数生成功能,但经常记不住几个随机数生成函数的用法,现在正好有点时间,整理一下。

1. torch.rand()

torch.rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor

该函数可以生成一个范围在[0, 1)之间均匀分布的随机tensor,tensor的形状由size指定。随机数类型默认为torch.float32,也可以通过torch.set_default_tensor_type()指定默认类型,例如:

>>> torch.tensor([1.2, 3]).dtype    # initial default  is torch.float32
torch.float32
>>> torch.set_default_tensor_type(torch.DoubleTensor)
>>> torch.tensor([1.2, 3]).dtype    # a new floating point tensor
torch.float64

Example:

生成一个3x4的tensor:

torch.rand(3,4)

2. torch.randn()

torch.randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) → Tensor

该函数用来生成一个均值为0,方差为1的正态分布tensor,tensor的形状由size指定,默认类型为torch.float32,也可由torch.set_default_tensor_type()指定默认类Example:

Example:

生成一个2x8的正态分布tensor:

torch.randn(2,8)

3. torch.randint()

该函数的定义为:

torch.randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

利用该函数,生成一个范围在[low, hight)之间的均匀分布随机整数tensor,tensor的形状通过size来定义。该函数默认生成torch.int64类型数据,如果需要生成其他类型,则可以通过dtype指定,例如可以指定dtype=torch.float32。

example:

生成一个大小为5x5的范围在0~10之间的tensor:

torch.randint(0, 10, (5,5))

4. torch.rand_like()

除了以上几种需要指定生成tensor形状的函数之外,还可以根据已知对象的形状来生成新的张量,这就是几个*_like函数的妙用,包括torch.rand_like,torch.randn_like,torch.randint_like。

其中,torch.rand_like的定义如下:

torch.rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor

该函数返回一个与输入对象input相同形状的tensor,该tensor符合[0, 1)之间的均匀分布。该函数与

torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)

具有相同的效果。

Example:

已知张量A,生成一个与A同形状的张量B:

A = torch.ones(4,5)
B = torch.rand_like(A)

 

torch.randn_like、torch.randint_like与torch.rand_like用法相似,下面只给出两个函数的定义,不再赘述。

torch.randn_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor
torch.randint_like(input, low=0, high, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) → Tensor

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1328904.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VBA_MF系列技术资料1-247

MF系列VBA技术资料 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧,我参考大量的资料,并结合自己的经验总结了这份MF系列VBA技术综合资料,而且开放源码(MF04除外),其中MF01-04属于定…

C语言操作符详解+运算符优先级表格

目录 前言 一、操作符是什么? 二、操作符的分类 三、算术操作符 四、逻辑操作符 五、比较操作符 六、位操作符 七、赋值操作符 八、其他操作符 九、运算符优先级表格 总结 前言 在编写程序时,最常用到的就是操作符,本文将详细的介绍…

C++ Qt开发:Charts绘图组件概述

Qt 是一个跨平台C图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍QCharts二维绘图组件的常用方法及灵活运用。 …

Unity自带的NavMesh寻路组件

最近看了一下Unity自带的NavMesh寻路组件,先说一下基本的使用: 首先先把AI Navgation的package包给安装上。 给场景地图添加上NavMeshSurface组件,然后进行烘焙,烘焙出对应的场景地图文件。 给移动物体添加对应的Nav MeshAgent组…

C语言中的关键字

Static 静态局部变量 结果: a作为静态局部变量,第一次进入该函数的时候,进行第一次变量的初始化,在程序整个运行期间都不释放。(因为下一次调用还继续使用上次调用结束的数值) 但是其作用域为局部作用域&…

Android Studio 显示前进后退按钮

在写代码的过程中我们经常需要快速定位到先前或者往后的代码位置,可以使用Alt左右箭头 但是新安装的Android Studio工具栏上是没有显示左右箭头的工具按钮的,需要我们设置将Toolbar显示出来 View-Appearance-Toolbar 勾选即可 显示后

综述 2022-Briefings in Bioinformatics:多模态AI+生物医学数据(主要集中于多组学数据)

Stahlschmidt, Sren Richard, Benjamin Ulfenborg, and Jane Synnergren. "Multimodal deep learning for biomedical data fusion: a review." Briefings in Bioinformatics 23.2 (2022): bbab569. https://doi.org/10.1093/bib/ bbab569 被引次数:124 …

【数据库模拟题目集】选择题

数据库应用程序的编写是基于数据库三级模式中的(外模式) 对创建数据库模式一类的数据库对象的授权可由CREATE USER时实现。新创建的数据库用户有三种权限,CONNECT、RESOURCE和DBA。拥有RESOURCE权限的用户(不能创建模式 &#xf…

怎么提取视频中的背景音乐?

当我们在刷视频的时候,有时候听到一个背景音乐很好听,但是又不知道歌名,比如英语歌,这个时候我们很难找到这首歌,相信有很多朋友会遇到这样的问题,不知道怎么弄,下面小编给大家推荐一些方法帮助…

TCP/IP:从数据包到网络的演变

引言 TCP/IP协议的起源可以追溯到20世纪60年代末和70年代初,美国国防部高级研究计划局(ARPA)研究开发一种可靠的通信协议,用于连接分散在不同地点的计算机和资源。 在当时,计算机之间的连接并不像现在这样普遍和便捷…

MapReduuce配置YARN集群部署并启动(非常详细!!)

🐮博主syst1m 带你 acquire knowledge! ✨博客首页——syst1m的博客💘 😘《CTF专栏》超级详细的解析,宝宝级教学让你从蹒跚学步到健步如飞🙈 😎《大数据专栏》大数据从0到秃头👽&…

Python to_numeric函数参数解读与最佳实践!

更多资料获取 📚 个人网站:ipengtao.com Python中的to_numeric函数是pandas库提供的一个强大而灵活的工具,用于将数据转换为数字类型。本文将深入探讨to_numeric函数的各种参数和用法,通过丰富的示例代码帮助大家更全面地理解和运…

[C语言]程序练习(一)

你好,这里是争做图书馆扫地僧的小白。 个人主页:争做图书馆扫地僧的小白_-CSDN博客 目标:希望通过学习技术,期待着改变世界。 目录 前言 一、常量练习 (一)整型常量 (二)浮点型常…

TrustZone之安全启动与引导失败处理

一、引导和信任链 引导是任何TrustZone系统的关键部分。只有在引导流程中之前运行的所有软件组件都是可信的情况下,才能信任某个软件组件。这通常被称为信任链。下图显示了一个简化的信任链: 在我们的示例中,首先运行的代码是boot ROM。我们必须隐式信任boot ROM,因…

六个探索性数据分析(EDA)工具,太实用了!

当进行数据分析时,探索性数据分析(EDA)是一个至关重要的阶段,它能帮助我们从数据中发现模式、趋势和异常现象。而选择合适的EDA工具又能够极大地提高工作效率和分析深度。在本文中,笔者将介绍6个极其实用的探索性数据分析(EDA)工具&#xff0…

《工具箱-SVN》SVN安装、备份、迁移教程

文章目录 一、服务器搭建SVN1.检查SVN是否存在2.安装SVN3.创建版本库4.创建版本库存放文件地址5.修改配置文件5.1 vim authz5.2 vim passwd5.3 vim svnserve.conf 6.启动并查看SVN7.SVN Checkout8.SVN Update9.SVN Commit 二、SVN-无法连接主机,目标计算机积极拒绝&…

CiteSpace最新安装教程

目录 一、CiteSpace特点介绍 二、CiteSpace安装教程 1、安装java 2、配置java环境变量 3、安装CiteSpace 4、运行CiteSpace 一、CiteSpace特点介绍 CiteSpace是一种用于分析学术文献的可视化工具,旨在帮助研究人员理解学术领域的演化、发现研究热点和趋势。 …

SpringBoot+Redis的Bloom过滤器

1.保姆级Linux安装Redis ①把redis.tar.gz下载到linux中,并用命令tar -zxvf安装 ②安装完成进入目录输入make进行编译,编译完成后输入make install 进行安装 ③创建两个文件夹mkdir bin mkdir etc 将redis目录下的redis.conf文件移动到etc文件中&…

Web自动化测试工具的优势分析

Web自动化测试工具在现代软件开发中扮演着关键的角色,帮助团队确保Web应用程序的质量和稳定性。然而,选择合适的Web自动化测试工具对项目的成功至关重要。本文将介绍Web自动化测试工具优势是什么! 1. 自动化执行 Web自动化测试工具能够模拟用户的行为&am…

jar混淆,防止反编译,Allatori工具混淆jar包

文章目录 Allatori工具简介下载解压配置config.xml注意事项 Allatori工具简介 官网地址:https://allatori.com/ Allatori不仅混淆了代码,还最大限度地减小了应用程序的大小,提高了速度,同时除了你和你的团队之外,任何人…