LIGA-Stereo:为基于立体 3D 检测器的学习 LiDAR 几何感知表示

news2024/12/22 18:56:16

论文地址:https://openaccess.thecvf.com/content/ICCV2021/papers/Guo_LIGA-Stereo_Learning_LiDAR_Geometry_Aware_Representations_for_Stereo-Based_3D_Detector_ICCV_2021_paper.pdf

论文代码:https://github.com/xy-guo/LIGA-Stereo

摘要

基于立体的3D检测旨在从立体图像中检测3D目标,为3D感知提供了低成本的解决方案。然而,与基于激光雷达的检测算法相比,其性能仍然较差。为了检测和定位准确的 3D 边界框,基于 LiDAR 的检测器对 LiDAR 点云的高级表示进行编码,例如准确的边界边界和表面法线方向。相反,由于立体匹配的限制,基于立体的检测器学习的高级特征很容易受到错误的深度估计的影响。
为了解决这个问题,论文提出了 LIGA-Stereo(LiDAR 几何感知立体检测器),在基于 LiDAR 的检测模型的高级几何感知表示的指导下学习基于立体的 3D 检测器。
此外,论文发现现有的基于体素的立体检测器无法从间接 3D 监督中有效地学习语义特征。因此附加一个辅助 2D 检测头来提供直接的 2D 语义监督。
上述两种策略提高了几何和语义表示能力。

论文背景

近年来,基于 LiDAR 的 3D 检测在自动驾驶和机器人技术中取得了不断提高的性能和稳定性。然而,LiDAR传感器的高成本限制了其在低成本产品中的应用。立体匹配是最常见的仅使用相机的深度感测技术。与LiDAR传感器相比,立体相机成本更低,分辨率更高,这使其成为3D感知的合适替代解决方案。立体图像的 3D 检测旨在使用估计的深度图 或隐式 3D 几何表示来检测目标。然而,与基于LiDAR的算法相比,现有的基于立体的3D检测算法的性能仍然较差。

基于 LiDAR 的检测算法将原始点云作为输入,然后将 3D 几何信息编码为中级和高级特征表示。为了检测和定位准确的 3D 边界框,模型必须学习有关目标边界和表面法线方向的鲁棒局部特征,这对于预测准确的边界框大小和方向至关重要。基于 LiDAR 的探测器学习的特征提供了精确 3D 几何结构的强大的高级总结。相比之下,由于立体匹配的限制,不准确的估计深度或隐式 3D 表示很难对目标的准确 3D 几何进行编码,尤其是对于远处的目标。此外,目标框监督仅提供目标级监督(位置、大小和方向)

论文利用先进的激光雷达检测模型,通过模仿激光雷达模型编码的几何感知表示来指导立体检测模型的训练。与识别任务的传统知识蒸馏相比,论文没有将LiDAR模型的最终错误分类和回归预测作为“软”目标,发现这对于训练立体检测网络没有什么好处。错误的回归目标会限制边界框回归的上限精度。
相反,论文强制模型将中间特征与 LiDAR 模型的中间特征对齐,后者对场景的高级几何表示进行编码。 LiDAR 模型的特征可以提供强大且有辨别力的高级几何感知特征,例如表面法线方向和边界位置。另一方面,LiDAR 特征可以提供额外的正则化,以缓解由错误的立体预测引起的过拟合问题。

除了学习更好的几何特征之外,论文还进一步探索如何学习更好的语义特征来提高 3D 检测性能。论文提出在 2D 语义特征上附加一个辅助的多尺度 2D 检测头,而不是从间接 3D 监督中学习语义特征,它可以直接指导 2D 语义特征的学习。根据DSGN 的消融研究,基线模型深度立体几何网络(DSGN)未能有效地从额外的语义特征中受益。论文认为,由于深度估计错误,网络从间接 3D 监督中提供了错误的语义监督,而提出的直接指导可以通过更好地学习 2D 语义特征来极大地提高 3D 检测性能。实验结果表明,性能进一步提高,特别是对于自行车手等样本较少的类别。

论文相关

立体匹配
第一个深度立体算法DispNet,从基于特征的相关 cost volume 回归视差图。后来使用多阶段细化和辅助语义特征来扩展 DispNet。最先进的立体模型通过连接所有视差候选者的左右 2D 特征来构建基于特征的 cost volume ,然后应用 3D 聚合网络来预测视差概率分布。最先进的立体检测网络也通过类似的网络结构来估计深度。

基于 LiDAR 的 3D 检测
通过利用 LiDAR 传感器捕获的更准确的深度信息,使用 LiDAR 点云的 3D 检测方法通常比基于图像的方法具有更好的性能。为了从不规则和稀疏的点云中学习有效的特征,大多数现有方法采用体素化操作将点云转移到规则网格,其中3D空间首先被划分为规则3D体素或鸟瞰2D网格通过检测头的卷积进行处理。
受它们的启发,论文提出模仿 LiDAR 模型中信息丰富的特征图,以便在 3D 框注释之外提供更好的指导。

基于立体的 3D 检测
基于立体的 3D 检测算法大致可以分为三种类型:
1)基于2D的方法
首先检测2D边界框提案,然后回归实例3D框。 Stereo-RCNN 扩展了 Faster RCNN ,用于立体输入以关联左右图像。 Disp R-CNN 和 ZoomNet 结合了额外的实例分割掩模和 part location map 来提高检测质量。然而,最终的性能受到 2D 检测算法的召回限制,并且 3D 几何信息没有得到充分利用。
2)基于伪LiDAR的3D检测
首先估计深度图,然后使用现有的基于LiDAR的算法检测3D边界框。 例如,Pseudo LiDAR++ 将 stereo cost volume 调整为深度成本量,以进行直接深度估计。。然而,这些模型仅考虑几何信息,缺乏互补的语义特征。
3)基于 volume 的方法构建
3D 锚空间或从 3D 立体 volume 进行检测。 DSGN 直接构建可微分 volume 表示,对场景的隐式 3D 几何结构进行编码,用于单阶段基于立体的 3D 检测。 PLUME 直接在 3D 空间中构造几何 volume 以进行加速。论文的工作以 DSGN 作为基线模型。解决了 DSGN 中存在的几个关键问题,并大幅超越了最先进的模型。

知识蒸馏
蒸馏是由 Hinton 等人首先提出的。 [1]通过使用大型教师网络预测中的“软化标签”来监督学生网络来进行模型压缩。进一步从“软化标签”来看,中间层的知识为教师提供了更丰富的信息。最近,知识蒸馏已成功应用于检测和语义分割。知识也可以跨模态转移

[1] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015.

论文方法

在这项工作中,为了提高模型的性能,论文开发了两种策略来分别学习更好的几何和语义特征。由于立体匹配的限制,基于立体的检测器很容易出现错误的深度估计,特别是对于低纹理表面、模糊边界和遮挡区域
相比之下,基于激光雷达的检测器学习的特征提供了强大的高级几何感知表示(准确的边界和表面法线方向)。为了最小化基于 LiDAR 的检测器和基于立体的探测器之间的差距,论文提出利用 LiDAR 模型来指导基于立体的探测器的训练,以实现更好的几何监督。此外,论文采用辅助二维语义监督来提高语义特征的学习效率。

深度立体几何网络

论文利用深度立体几何网络(DSGN)作为基线模型,它使用隐式 volumetric 表示直接检测目标。

立体空间中的 Volume
给定左右图像对 ( I L , I R ) (\mathcal I_L,\mathcal I_R) (IL,IR) 及其特征 ( F L , F R ) (\mathcal F_L,\mathcal F_R) (FLFR),通过连接每个候选深度级别的左特征和相应的右特征来构造平面扫描 volume V s t \mathcal V_{st} Vst
V s t ( u , v , w ) = concat [ F L ( u , v ) , F R ( u − f L d ( w ) s F , v ) ] (1) \tag1 \mathcal V_{st}(u,v,w) = \text{concat} \lbrack \mathcal F_L (u,v),\mathcal F_R(u - \frac{fL}{d(w)s \mathcal F},v) \rbrack Vst(u,v,w)=concat[FL(u,v)FR(ud(w)sFfL,v)](1)

其中 ( u , v ) (u,v) (u,v) 是当前像素坐标。 w = 0 , 1 , ⋅ ⋅ ⋅ ⋅ w=0, 1,···· w=0,1,⋅⋅⋅⋅ 为候选深度索引, d ( w ) = w ⋅ v d + z min ⁡ d(w)=w·v_d+z_{\min} d(w)=wvd+zmin 为计算其对应深度的函数,其中 v d v_d vd 为深度区间, z min ⁡ z_{\min} zmin为该深度的最小深度检测区域。 f f f L L L s F s_{\mathcal F} sF 分别是相机焦距、立体相机对的基线和特征图的步幅。使用 3D cost volume 聚合网络对 V s t \mathcal V_{st} Vst 进行滤波后,我们获得聚合立体体积 V s t \mathcal V_{st} Vst 和深度分布体积 P s t \mathcal P_{st} Pst P s t ( u , v , : ) \mathcal P_{st}(u,v,:) Pst(u,v,:)表示像素 ( u , v ) (u, v) (u,v) 在所有离散深度级别 d ( w ) d(w) d(w) 上的深度概率分布。

3D 空间中的体积
为了将 feature volume 从立体空间转换到正常的3D空间,将3D检测区域划分为相同大小的小体素。对于每个体素,使用特征内在函数 K F \boldsymbol K_{\mathcal F} KF 将其中心 ( x , y , z ) (x, y, z) (x,y,z) 投影回立体空间,以获得其重新投影的像素坐标 ( u , v ) (u, v) (u,v) 和深度索引 d − 1 ( z ) = ( z − z min ⁡ ) / v d d^{−1}(z)=(z−z_{\min} )/v_d d1(z)=(zzmin)/vd。然后,3D 空间中的 volume 被定义为重采样立体 volume 和深度概率 masked 的语义特征的串联,
V 3 d ( x , y , z ) = concat [ V s t ( u , v , d − 1 ( z ) ) , F s e m ( u , v ) ⋅ P s t ( u , v , d − 1 ( z ) ) ] (2) \tag2 \mathcal V_{3d}(x,y,z) = \text{concat}[\mathcal V_{st}(u,v,d^{-1}(z)),\mathcal F_{sem}(u,v)\cdot \mathcal P_{st}(u,v,d^{-1}(z))] V3d(x,y,z)=concat[Vst(u,v,d1(z)),Fsem(u,v)Pst(u,v,d1(z))](2)

其中 V s t \mathcal V_{st} Vst F s e m \mathcal F_{sem} Fsem 分别提供几何和语义特征。请注意,为了简单起见,我们忽略了三线性和双线性重采样运算符。

BEV 空间和检测头的功能
然后通过将通道尺寸和高度尺寸像 DSGN 一样合并,将 3D volume V 3 d \mathcal V_{3d} V3d 重新排列为 2D 鸟瞰图 (BEV) 特征 F B E V \mathcal F_{BEV} FBEV。2D 聚合网络和检测头连接到 F B E V \mathcal F_{BEV} FBEV,以生成聚合的 BEV 特征 F ~ B E V \tilde {\mathcal F}_{BEV} F~BEV 并分别预测最终的 3D 边界框。
训练损失分为两部分,深度回归损失和3D检测损失​​,
L b s l = L d e p t h + L d e t (3) \tag3 \mathcal L_{bsl} = \mathcal L_{depth}+ \mathcal L_{det} Lbsl=Ldepth+Ldet(3)

学习 LiDAR 几何感知表示

基于 LiDAR 的检测模型将原始点云作为输入,然后将其编码为高级特征(例如精确边界和表面法线方向)以获得精确的边界框局部化。对于基于立体的模型,由于错误的深度表示,纯粹的深度损失和检测损失不能很好地使模型学习遮挡区域、非纹理区域和远处物体的这些特征

受上述观察的启发,论文提出使用激光雷达模型的高级几何感知特征来指导基于立体的检测器的训练。在本文中,我们利用 SECOND 作为 LiDAR “teacher”。为了使两个模型之间的特征尽可能一致,论文采用相同结构的 2D 聚合网络和检测头,如图所示。
在这里插入图片描述

由于LiDAR模型和立体模型的主干存在巨大差异,论文只关注如何对高级特征 F i m ⊆ { V 3 d , F B E V , F ~ B E V } \mathbb F_{im} \sube \{\mathcal V_{3d}, \mathcal F_{BEV}, \tilde {\mathcal F}_{BEV} \} Fim{V3d,FBEV,F~BEV} 进行特征模仿,这些特征在LiDAR模型和立体模型之间具有相同的形状两个模型。
论文的模仿损失旨在最小化立体特征 F i m ∈ F i m \mathcal F_{im} \in \mathbb F_{im} FimFim 与其对应的 LiDAR 特征 F i m l i d a r F^{lidar}_{im} Fimlidar 之间的特征距离:
L i m = ∑ F i m ∈ F i m 1 N p o s ∣ ∣ M f g M s g ( g ( F i m ) − F i m l i d a r E [ ∣ F i m l i d a r ∣ ] ) ∣ ∣ 2 2 (4) \tag4 \mathcal L_{im} = \sum_{\mathcal F_{im} \in \mathbb F_{im}} \frac{1}{N_{pos}}\bigg|\bigg| M_{fg}M_{sg}\bigg( g(\mathcal F_{im})-\frac{\mathcal F_{im}^{lidar}}{\mathbb E[|\mathcal F_{im}^{lidar}|]} \bigg) \bigg| \bigg|_2^2 Lim=FimFimNpos1 MfgMsg(g(Fim)E[Fimlidar]Fimlidar) 22(4)

其中 g g g 是内核大小为 1 1 1 的单个卷积层,后跟可选的 ReLU 层(取决于 ReLU 是否应用于 F i m l i d a r \mathcal F_{im}^{lidar} Fimlidar)。 M f g M_{fg} Mfg 是前景掩码,在任何真实对象框内为 1 1 1,否则为 0 0 0 M s p M_{sp} Msp F i m l i d a r \mathcal F_{im}^{lidar} Fimlidar 的稀疏掩码,对于非空索引为 1 1 1,否则为 1 1 1 N p o s = ∑ M f g M s p N_{pos} =\sum M_{fg}M_{sp} Npos=MfgMsp 是归一化因子。请要注意的是,LiDAR 特征 F i m l i d a r \mathcal F_{im}^{lidar} Fimlidar 通过 F i m l i d a r \mathcal F_{im}^{lidar} Fimlidar 非零绝对值的通道期望进行归一化,以确保 L2 损失的尺度稳定性。

实验结果表明,模仿整个特征图对检测性能的提升不大,因此 M f g M_{fg} Mfg 对于使模仿损失集中在前景物体上至关重要。实验发现 F B E V \mathcal F_{BEV} FBEV V 3 d \mathcal V_{3d} V3d 为训练我们的立体检测网络提供了最有效的监督。

通过直接 2D 监督提升语义特征

从方程 (2) 可以看到,在将语义特征重采样到 3D 空间之前,它首先乘以 P s t \mathcal P_{st} Pst 的深度概率(可以看作是 3D 占用掩模的估计)。

这样,语义特征仅在估计表面附近重新采样(图3中的橙色虚线)。
在这里插入图片描述
然而,当估计的深度值存在较大误差时,语义特征将被重新采样到错误的位置,如图所示。因此,重采样的语义特征偏离了真实位置,然后被分配负锚点(图中的红色方块),并且正锚点周围没有重采样的语义特征(图3中的绿色方块) 。因此,这种情况下语义特征的监督信号不正确,导致语义特征的学习效率低。

为了解决这个问题,论文添加了一个辅助的 2D 检测头来为学习语义特征提供直接监督。论文没有使用多级特征创建特征金字塔(FPN),而是只使用单个特征图 F s e m \mathcal F_{sem} Fsem 来构建特征金字塔,如图1(e)所示,这形成了信息“瓶颈”强制将所有语义特征编码到 F s e m \mathcal F_{sem} Fsem 中。将步幅为 2 2 2 的五个连续卷积层附加到 F s e m \mathcal F_{sem} Fsem 上,构建多级特征金字塔,然后将其连接到 ATSS 头进行 2D 检测。
由于论文发现扩张卷积和空间金字塔池化(SPP)已经产生了具有大感受野的高度语义特征,因此为了简单起见,论文忽略了 FPN 自上而下的路径。

为了确保 2D 和 3D 特征之间的语义对齐,2D 检测头应该预测重新投影的 3D 目标中心周围的高分。论文对 ATSS 的正样本分配算法做了一个小的修改。对于每个真实边界框 g g g,如果它们的中心最接近重新投影的 3D 目标中心,会从每个尺度中选择 k k k 个候选锚点,而不是样选择 2D 边界框中心。然后按照 ATSS 中的动态 IoU 阈值对候选锚点进行过滤,以分配最终的正样本。

Baseline 和训练损失的修改

论文对 DSGN 进行了一些重要修改,以获得更快、更稳健的基线模型。 1)减少通道数和层数,以减少内存消耗和计算成本。 2) 利用SECOND 检测头进行3D检测。 3)基于 Kullback-Leibler 散度将等式(6)中的 smooth-L1 深度回归损失替换为单模态深度损失。4)结合使用 L1 损失和辅助旋转 3D IoU 损失以获得更好的边界框回归。5) 将一个小型 U-Net 连接到 2D 主干,以编码全分辨率特征图以构建立体体积。

我们模型的新总体损失公式为:
L = L d e p t h + L d e t + λ i m L i m + λ 2 d L 2 d , L d e t = L c l s + λ r e g L 1 L r e g L 1 + λ r e g I o U L r e g I o U + λ d i r L d i r (5) \tag5 \mathcal L = \mathcal L_{depth} + \mathcal L_{det} + \lambda_{im}\mathcal L_{im} + \lambda_{2d}\mathcal L_{2d}, \\ \mathcal L_{det} = \mathcal L_{cls}+ \lambda_{reg}^{L1} \mathcal L_{reg}^{L1}+ \lambda_{reg}^{IoU} \mathcal L_{reg}^{IoU}+ \lambda_{dir} \mathcal L_{dir} L=Ldepth+Ldet+λimLim+λ2dL2d,Ldet=Lcls+λregL1LregL1+λregIoULregIoU+λdirLdir(5)

其中 L c l s \mathcal L_{cls} Lcls, L r e g L 1 L_{reg}^{L1} LregL1, 和 L d i r L_{dir} Ldir 是与 SECOND 中相同的分类损失、框回归损失和方向分类损失。 L r e g I o U \mathcal L_{reg}^{IoU} LregIoU 是 3D 框预测和真实边界框之间的平均旋转 I o U IoU IoU 损失。单模态深度损失 L d e p t h L_{depth} Ldepth 的公式为
L d e p t h = 1 N ∑ u , v ∑ w [ − max ⁡ ( 1 − ∣ d ∗ − d ( w ) ∣ v d ) log ⁡ P s t ( u , v , w ) ] (6) \tag6 \mathcal L_{depth} = \frac{1}{N} \sum_{u,v} \sum_{w} \bigg[ -\max \bigg( 1-\frac{ |d^{*} - d(w)| }{v_{d}} \bigg) \log \mathcal P_{st} (u,v,w) \bigg] Ldepth=N1u,vw[max(1vddd(w))logPst(u,v,w)](6)

其中 d ∗ d^* d 是真实深度。请注意,损失仅适用于具有有效 LiDAR 深度的像素 ( u , v ) (u, v) (u,v) N g t N_{gt} Ngt 表示有效像素的数量。与原来的 L1 损失相比,式(6)中的损失为: 对目标分布进行更加集中的监管。

论文结论

在论文中,提出在高级几何感知 LiDAR 特征和直接语义监督的指导下学习基于立体的 3D 检测器,成功提高了几何和语义能力。模型在官方 KITTI 3D 检测基准上超越了最先进的算法超过 10.44% mAP,这缩小了基于立体和基于 LiDAR 的 3D 检测算法之间的差距。然而,基于立体的 3D 探测器仍然面临遮挡、无纹理区域和远处物体的问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1327510.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决Maven找不到依赖的问题

如果经过Reload Maven项目,清除Idea缓存,甚至重启Idea等方法都解决不了Dependency xxx not found的问题,不妨试试手动安装。 1. 进入maven仓库,搜索自己需要的对应版本的依赖。 2. 点击下图红框jar图标下载对应的jar包&#xff0c…

CGAL的3D Alpha Shapes

假设我们给定一个二维或三维的点集S,我们希望得到类似“这些点形成的形状”的东西。这是一个相当模糊的概念,可能有许多可能的解释,阿尔法形状就是其中之一。阿尔法形状可用于从密集的无组织数据点集进行形状重建。事实上,阿尔法形…

基于比较的排序算法总结(java实现版)

目录 什么是基于比较的排序算法 什么是排序算法的稳定性 基础排序算法的稳定性 插入排序法 希尔排序法 冒泡排序法 总结 高级算法的稳定性 快速排序法 堆排序法 归并排序法 总结 注意 什么是基于比较的排序算法 基于比较的排序算法定义:之所以能给元素…

【银行测试】银行金融测试+金融项目测试点汇总...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、银行金融测试是…

案例101:基于微信小程序的停车共享小程序

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

微信小程序 动态设置状态栏样式

onLoad(options) {//修改状态栏标题wx.setNavigationBarTitle({title: 页面标题, //页面标题success: () > {}, //接口调用成功的回调函数fail: () > {}, //接口调用失败的回调函数complete: () > {} //接口调用结束的回调函数(调用成功、失败…

CentOS 7 Tomcat服务的安装

前提 安装ava https://blog.csdn.net/qq_36940806/article/details/134945175?spm1001.2014.3001.5501 1. 下载 wget https://mirrors.tuna.tsinghua.edu.cn/apache/tomcat/tomcat-9/v9.0.84/bin/apache-tomcat-9.0.84.tar.gzps: 可选择自己需要的版本下载安装https://mirr…

Centos7在安装Graylog时新安装MongoDB报错端口不监听服务不启动无法运行启动失败

由于虚拟机服务器上需要安装Graylog需要安装MongoDB,尝试官网下载安装包,和yum安装均无法正常启动,折腾了好几天,重装了十几次,网上搜索了很多很多资料,均无法正常运行,百度上搜索各种文档&…

python三大开发框架django、 flask 和 fastapi 对比

本文讲述了什么启发了 FastAPI 的诞生,它与其他替代框架的对比,以及从中汲取的经验。 如果不是基于前人的成果,FastAPI 将不会存在。在 FastAPI 之前,前人已经创建了许多工具 。 几年来,我一直在避免创建新框架。首先&…

【python笔记】并发编程

前言 菜某的笔记总结分享。有错误请指正。 并发编程的意义 并发编程是用来提升代码执行的效率的。 名词理解 进程和线程 我们可以这样理解进程和线程。进程是一个工厂,线程是工厂里的一条流水线。 我们要让我们产品的生产效率提高,我们可以多开工…

基于多反应堆的高并发服务器【C/C++/Reactor】(上)

(一)初始化服务器端用于监听的套接字 Server.h #pragma once // 初始化监听的套接字 int initListenFd(unsigned short port); Server.c int initListenFd(unsigned short port) {// 1.创建监听的fdint lfd socket(AF_INET, SOCK_STREAM, 0);if(lf…

HTTP:HTTP报文

HTTP:HTTP报文 1. 报文流1.1 报文流入源端服务器1.2 报文向下游流动1.3 报文的组成部分1.3.1 报文的语法1.3.2 起始行1. 请求行2. 响应行3. 方法4. 状态码 如果说HTTP是因特网的信使,那么HTTP报文就是用它来搬东西的包裹了。 1. 报文流 HTTP报文是在…

最新国内免费使用GPT4教程,GPT语音对话使用,Midjourney绘画

一、前言 ChatGPT3.5、GPT4.0、GPT语音对话、Midjourney绘画,相信对大家应该不感到陌生吧?简单来说,GPT-4技术比之前的GPT-3.5相对来说更加智能,会根据用户的要求生成多种内容甚至也可以和用户进行创作交流。 然而,GP…

PHP字符串解析特性绕过WAF

[RoarCTF 2019]Easy Calc 题目的突破点: 只能传入数字和运算符号,不能传入字符(想办法绕过waf) 方法1. php解析规则:当php进行解析时,如果变量名前面有空格,php会自动去掉前面的空格再进行…

轻松搭建知识付费小程序:让知识传播更便捷

明理信息科技saas知识付费平台 在当今数字化时代,知识付费已经成为一种趋势,越来越多的人愿意为有价值的知识付费。然而,公共知识付费平台虽然内容丰富,但难以满足个人或企业个性化的需求和品牌打造。同时,开发和维护…

打破Tomcat中的双亲委派机制:探讨与实践

目录 引言 1. 双亲委派机制概述 2. 打破双亲委派机制的场景 3. Tomcat中的类加载器体系 4. 打破双亲委派机制的方法 4.1 在catalina.properties中配置common.loader 4.2 在META-INF/context.xml中配置Loader元素 4.3 编写自定义的类加载器 5. 潜在的问题与解决方案 5…

Shell编程自动化之特殊Shell扩展变量

1.变量的处理 1.1 如果parameter变量值为空,那么返回str字符串。 ${parameter:-str} 1.2 如果parameter变量值为空,那么str替代变量值,且返回其值。 ${parameter:str} 1.3 如果parameter变量值为空,那么str当作stderr输出&am…

Django 简单图书管理系统

一、图书需求 1. 书籍book_index.html中有超链接:查看所有的书籍列表book_list.html页面 2. 书籍book_list.html中显示所有的书名,有超链接:查看本书籍详情book_detail.html(通过书籍ID)页面 3. 书籍book_detail.html中书的作者和出版社&…

现代雷达车载应用——第3章 MIMO雷达技术 3.2节 汽车MIMO雷达波形正交策略

经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 3.2 汽车MIMO雷达波形正交策略 基于MIMO雷达技术的汽车雷达虚拟阵列合成依赖于不同天线发射信号的可分离性。当不同天线的发射信号正交时&#x…

德人合科技 | 设计公司文件加密系统——天锐绿盾自动智能透明加密防泄密系统

设计公司文件加密系统——天锐绿盾自动智能透明加密防泄密系统 PC端访问地址: www.drhchina.com 一、背景介绍 设计公司通常涉及到大量的创意作品、设计方案、客户资料等重要文件,这些文件往往包含公司的核心价值和商业机密。因此,如何确保…