【深度学习】注意力机制(七)Agent Attention

news2024/11/24 20:55:29

本文介绍Agent Attention注意力机制,Transformer中的Attention模块可以提取全局语义信息,但是计算量太大,Agent Attention是一种计算非常有效的Attention模块。

论文:Agent Attention: On the Integration of Softmax and Linear Attention

代码:https://github.comA/leaplabthu/agent-attention

一、模块结构

Softmax Attention,Linear Attention, Agent Attention结构如下图:

Softmax Attention先进行Q和K的矩阵乘法,然后经过softmax并与V相乘,计算量大。

Linear Attention先进行K和V的矩阵乘法,然后再与Q相乘,降低了计算量。

Agent Attention引入了agent token A,A的维度为(n,d),n远小于N,通过与A的矩阵乘法降低了Q,K的维度,进而降低计算量。

二、推理公式

传统Attention的计算如下(x是输入,W是权重):

Softmax Attention就是将上式中的Sim(Q,K)变成了下式:

而Linear Attention的Sim(Q,K)如下:

为了简单起见,可以将Softmax Attention和Linear Attention写成下式:

那么Agent Attention可以写成:

等价于下式(A是引入的Agent token):

下图是Agent Attention的示意图(可以看到与最上面的图和上式很相似):

三、代码

Agent Attention可以放入各种Transformer模块中,这里展示PVT中使用Agent Attention的代码(就是将PVT原有的Attention模块替换成Agent Attention):

# -----------------------------------------------------------------------
# Agent Attention: On the Integration of Softmax and Linear Attention
# Modified by Dongchen Han
# -----------------------------------------------------------------------


import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg

__all__ = [
    'agent_pvt_tiny', 'agent_pvt_small', 'agent_pvt_medium', 'agent_pvt_large'
]


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class AgentAttention(nn.Module):
    def __init__(self, dim, num_patches, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
                 sr_ratio=1, agent_num=49, **kwargs):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_patches = num_patches
        window_size = (int(num_patches ** 0.5), int(num_patches ** 0.5))
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

        self.agent_num = agent_num
        self.dwc = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=(3, 3), padding=1, groups=dim)
        self.an_bias = nn.Parameter(torch.zeros(num_heads, agent_num, 7, 7))
        self.na_bias = nn.Parameter(torch.zeros(num_heads, agent_num, 7, 7))
        self.ah_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, window_size[0] // sr_ratio, 1))
        self.aw_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, 1, window_size[1] // sr_ratio))
        self.ha_bias = nn.Parameter(torch.zeros(1, num_heads, window_size[0], 1, agent_num))
        self.wa_bias = nn.Parameter(torch.zeros(1, num_heads, 1, window_size[1], agent_num))
        trunc_normal_(self.an_bias, std=.02)
        trunc_normal_(self.na_bias, std=.02)
        trunc_normal_(self.ah_bias, std=.02)
        trunc_normal_(self.aw_bias, std=.02)
        trunc_normal_(self.ha_bias, std=.02)
        trunc_normal_(self.wa_bias, std=.02)
        pool_size = int(agent_num ** 0.5)
        self.pool = nn.AdaptiveAvgPool2d(output_size=(pool_size, pool_size))
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, H, W):
        b, n, c = x.shape
        num_heads = self.num_heads
        head_dim = c // num_heads
        q = self.q(x)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(b, c, H, W)
            x_ = self.sr(x_).reshape(b, c, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(b, -1, 2, c).permute(2, 0, 1, 3)
        else:
            kv = self.kv(x).reshape(b, -1, 2, c).permute(2, 0, 1, 3)
        k, v = kv[0], kv[1]

        agent_tokens = self.pool(q.reshape(b, H, W, c).permute(0, 3, 1, 2)).reshape(b, c, -1).permute(0, 2, 1)
        q = q.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3)
        k = k.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3)
        v = v.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3)
        agent_tokens = agent_tokens.reshape(b, self.agent_num, num_heads, head_dim).permute(0, 2, 1, 3)

        kv_size = (self.window_size[0] // self.sr_ratio, self.window_size[1] // self.sr_ratio)
        position_bias1 = nn.functional.interpolate(self.an_bias, size=kv_size, mode='bilinear')
        position_bias1 = position_bias1.reshape(1, num_heads, self.agent_num, -1).repeat(b, 1, 1, 1)
        position_bias2 = (self.ah_bias + self.aw_bias).reshape(1, num_heads, self.agent_num, -1).repeat(b, 1, 1, 1)
        position_bias = position_bias1 + position_bias2
        agent_attn = self.softmax((agent_tokens * self.scale) @ k.transpose(-2, -1) + position_bias)
        agent_attn = self.attn_drop(agent_attn)
        agent_v = agent_attn @ v

        agent_bias1 = nn.functional.interpolate(self.na_bias, size=self.window_size, mode='bilinear')
        agent_bias1 = agent_bias1.reshape(1, num_heads, self.agent_num, -1).permute(0, 1, 3, 2).repeat(b, 1, 1, 1)
        agent_bias2 = (self.ha_bias + self.wa_bias).reshape(1, num_heads, -1, self.agent_num).repeat(b, 1, 1, 1)
        agent_bias = agent_bias1 + agent_bias2
        q_attn = self.softmax((q * self.scale) @ agent_tokens.transpose(-2, -1) + agent_bias)
        q_attn = self.attn_drop(q_attn)
        x = q_attn @ agent_v

        x = x.transpose(1, 2).reshape(b, n, c)
        v = v.transpose(1, 2).reshape(b, H, W, c).permute(0, 3, 1, 2)
        x = x + self.dwc(v).permute(0, 2, 3, 1).reshape(b, n, c)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_patches, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1,
                 agent_num=49, attn_type='A'):
        super().__init__()
        self.norm1 = norm_layer(dim)
        assert attn_type in ['A', 'B']
        if attn_type == 'A':
            self.attn = AgentAttention(
                dim, num_patches,
                num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio,
                agent_num=agent_num)
        else:
            self.attn = Attention(
                dim,
                num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        # assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
        #     f"img_size {img_size} should be divided by patch_size {patch_size}."
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        B, C, H, W = x.shape

        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        H, W = H // self.patch_size[0], W // self.patch_size[1]

        return x, (H, W)


class PyramidVisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], agent_sr_ratios='1111', num_stages=4,
                 agent_num=[9, 16, 49, 49], attn_type='AAAA', **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
        self.num_stages = num_stages

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0

        attn_type = 'AAAA' if attn_type is None else attn_type
        for i in range(num_stages):
            patch_embed = PatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i - 1) * patch_size),
                                     patch_size=patch_size if i == 0 else 2,
                                     in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                     embed_dim=embed_dims[i])
            num_patches = patch_embed.num_patches
            pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dims[i]))
            pos_drop = nn.Dropout(p=drop_rate)

            block = nn.ModuleList([Block(
                dim=embed_dims[i], num_patches=num_patches, num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
                qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + j],
                norm_layer=norm_layer, sr_ratio=sr_ratios[i] if attn_type[i] == 'B' else int(agent_sr_ratios[i]),
                agent_num=int(agent_num[i]), attn_type=attn_type[i])
                for j in range(depths[i])])
            cur += depths[i]

            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"pos_embed{i + 1}", pos_embed)
            setattr(self, f"pos_drop{i + 1}", pos_drop)
            setattr(self, f"block{i + 1}", block)

        # classification head
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        # init weights
        for i in range(num_stages):
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            trunc_normal_(pos_embed, std=.02)
        # trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        # return {'pos_embed', 'cls_token'} # has pos_embed may be better
        return {'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def _get_pos_embed(self, pos_embed, patch_embed, H, W):
        if H * W == self.patch_embed1.num_patches:
            return pos_embed
        else:
            return F.interpolate(
                pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
                size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)

    def forward_features(self, x):
        B = x.shape[0]

        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            pos_embed = getattr(self, f"pos_embed{i + 1}")
            pos_drop = getattr(self, f"pos_drop{i + 1}")
            block = getattr(self, f"block{i + 1}")
            x, (H, W) = patch_embed(x)

            pos_embed = self._get_pos_embed(pos_embed, patch_embed, H, W)

            x = pos_drop(x + pos_embed)
            for blk in block:
                x = blk(x, H, W)
            if i != self.num_stages - 1:
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()

        return x.mean(dim=1)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)

        return x


def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v

    return out_dict


def agent_pvt_tiny(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


def agent_pvt_small(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
    model.default_cfg = _cfg()

    return model


def agent_pvt_medium(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model


def agent_pvt_large(pretrained=False, **kwargs):
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
        **kwargs)
    model.default_cfg = _cfg()

    return model

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1326953.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

虚拟机的下载、安装

下载 vmware workstation(收费的虚拟机) 下载vbox 网址:Oracle VM VirtualBox(免费的虚拟机) 以下选择一个下载即可,建议下载vbox,因为是免费的。安装的时候默认下一步即可(路径最好…

第二周:AI产品经理全局学习

一、AI产品架构全景 二、 AI产品岗位分析和了解 三、 AI产品能力模型 四、AI产品经理工作流 五、AI产品经理学习路径和规划 六、本周市场动态

DC-磁盘管理

2023年全国网络系统管理赛项真题 模块B-Windows解析 题目 在DC2上安装及配置软RAID 5。在安装好的DC2虚拟机中添加三块10G虚拟磁盘。组成RAID 5,磁盘分区命名为卷标H盘:Raid5。手动测试破坏一块磁盘,做RAID磁盘修复,确认RAID 5配置完毕。配置步骤 关闭虚拟机,添加3块10G磁…

Easyexcel读取单/多sheet页

Easyexcel读取单/多sheet页 此文档会说明单个和多个的sheet页的读取方法,包括本人在使用过程中的踩坑点。 依赖不会的自行百度导入,话不多说,直接上干货。以下示例基于2.x,新版本基本类似 1、创建实体 实体是用来接收对应列的数据…

计算机找不到vcruntime140_1.dll文件的解决方法,完美解决

在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是找不到vcruntime140_1.dll。这些动态链接库文件是程序运行所必需的,一旦缺失,就会导致程序无法正常运行。但是不用担心,下面我将为大家介绍5个解决方法&am…

【STM32】I2C通信

基本的任务是:通过通信线,实现单片机读写外挂模块寄存器的功能。其中至少要实现在指定位置写寄存器和在指定的位置读寄存器这两个功能。 1 I2C通信 I2C(Inter IC Bus)是由Philips公司开发的一种通用数据总线 两根通信线&#x…

Ubuntu 常用命令之 less 命令用法介绍

📑Linux/Ubuntu 常用命令归类整理 less命令是一个在Unix和Unix-like系统中用于查看文件内容的命令行工具。与more命令相比,less命令提供了更多的功能和灵活性,例如向前和向后滚动查看文件,搜索文本,查看长行等。 les…

用VS Code修改源代码的编码格式

用VS Code打开一个编码格式为GB2312的源代码文件,中文部分显示为乱码 这是因为VS Code默认解码格式为UTF-8 此时我们点击上面红框这个位置,命令面板弹出两个选项,选择通过编码重新打开 可以看到VS Code已经猜测出该文件就是GB 2312编码的…

卡通动漫AI绘画视频风格化AI智能PR插件StyleX免费下载

带有AI的视频风格化工具PR AI智能绘画插件。将视频转换为卡通、绘图、绘画、半色调和许多其他风格。 性能高度依赖GPU,一些旧的GPU卡(2012年之前)不受支持。 StyleX是一款先进的视频风格化工具,采用AI技术,它不仅可以将…

中小型教育网络安全解决方案

热门IT技术视频教程:https://xmws-it.blog.csdn.net/article/details/134398330?spm1001.2014.3001.5502 一、中小型教育网络的安全现状及挑战 当前,校园网的安全形势非常严峻,大量的垃圾邮件、黑客攻击、病毒蠕虫等困扰着管理者。而且这些作…

IP数据在大数据行业的创新应用

随着大数据技术的迅猛发展,IP数据的应用在大数据行业中变得愈加广泛。IP数据云通过真实案例,研究IP数据在大数据行业中的创新应用,探讨其在用户行为分析和个性化推荐等方面的关键作用。 第一部分:IP数据在用户行为分析中的应用 …

使用bs4 分析html文件

首先需要 pip install beautifulsoup4安装 然后为了方便学习此插件,随便打开一个网页,然后鼠标右键,打开源网页,如下图片 这样就可以获得一个网页源码,全选复制粘贴到本地,存储为 .html 文件,…

了解免费SSL证书:单域名、多域名与通配符

SSL证书是一种常用的安全协议,它通过加密数据传输,确保用户与网站之间的信息传递得以安全进行。本文将介绍免费SSL证书的三种常见类型:单域名、多域名和通配符,帮助您选择适合您需求的SSL证书。 单域名SSL证书 单域名SSL证书是最…

[AFCTF 2021]google authenticator

文章目录 前置知识谷歌身份验证redis-cli结合定时任务提权 解题过程 前置知识 谷歌身份验证 GitHub上有开源的项目 参考文章 我们下载下载该项目&#xff0c;然后按照给的exp修改一下 在该项目创建exp.php&#xff0c;内容如下 <?php require_once PHPGangsta/GoogleAu…

多维时序 | MATLAB实现WOA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现WOA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现WOA-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现WOA-CNN-LST…

硬件基础-LDO

LDO&#xff08;低压差线性稳压器&#xff09; 1.原理 通过运放调节P-MOS的输出 低压差&#xff1a; 输出压降比较低&#xff0c;例如输入3.3V&#xff0c;输出可以达到3.2V。 线性&#xff1a; LDO内部的MOS管工作于线性状态。 稳压器&#xff1a; 说明了LDO的用途是用来…

3d max高质量渲染时,硬件的要求有什么?

渲染过程中&#xff0c;想要追求&#xff0c;效果图高质量渲染&#xff0c;高效率渲染的过程中&#xff0c;3d max高清渲染不只是三维软件的一个要求&#xff0c;对于本地计算机的硬件要求配置也是很重要的。 今天&#xff0c;小编带大家来聊聊3d max高质量渲染过程中&#xff…

Linux——apt-get工具

apt-get是Debian和Ubuntu等基于Debian的Linux发行版的包管理工具&#xff0c;用于自动从互联网软件仓库中搜索、下载、安装、升级、卸载软件或操作系统&#xff0c;以及自动处理依赖关系。 使用apt-get进行软件包安装的基本步骤 &#xff08;请注意&#xff0c;具体的命令和操…

vue+element-ui实现el-time-picker组件只显示分钟和秒

1.实现效果 2.页面代码 <el-time-pickerv-model"formValidate.flightDuration"value-format"mm:ss"format"mm:ss":picker-options"{selectableRange: 00:00:00 - 00:59:59}"popper-class"noneMinute"placeholder"飞…

06.仿简道云公式函数实战-前瞻

1.前言 在上篇文章中&#xff0c;我们介绍了QLExpress的进阶知识&#xff0c;扩展操作符&#xff0c;自定义操作符和自定义函数等内容。学了上面的内容后&#xff0c;目前对于QLExpress使用已经问题不大&#xff0c;从这篇文章&#xff0c;我们就进入我们的主题仿简道云公式函…