25、新加坡南洋理工、新加坡国立大学提出FBCNet:完美融合FBCSP的CNN,EEG解码SOTA水准![抱歉老师,我太想进步了!]

news2025/1/6 19:31:00

前言:

阴阳差错,因工作需要,需要查阅有关如何将FBCSP融入CNN中的文献,查阅全网,发现只此一篇文章,心中大喜,心想作者哪家单位,读之,原来是自己大导(新加坡工程院院士)目前任职的高校,心里斐然,平台在那,这实验室别人喝漏的矿泉水拿过来都能发个CVPR。院士资源,高山仰止。

论文:

《FBCNet: A Multi-view Convolutional Neural Network for Brain-Computer Interface》

2021年3月17日arXiv<Computer Science>

代码:

https://github.com/ravikiran-mane/FBCNet.

本文完美的将机器学习FBCSP与深度学习CNN相结合,性能超越了FBCSP达到了脑电解码的SOTA水准!

0、Abstract:

缺乏足够的训练样本和噪声高维特征是基于脑机接口(BCI)的运动图像(MI)解码算法面临的主要挑战。为了解决这些挑战,受脑梗死神经生理特征的启发,本文提出了一种新的用于脑梗死分类的Filter-Bank卷积网络(FBCNet)。FBCNet采用多视图数据表示和空间滤波来提取光谱空间判别特征。这种多阶段方法可以在训练数据有限的情况下有效地训练网络。更重要的是,在FBCNet中,我们提出了一种新的方差层,可以有效地聚合脑电时域信息。通过这种设计,我们将FBCNet与最先进的(SOTA) BCI算法在四个MI数据集上进行比较:BCI竞赛IV数据集2a (bbic -IV-2a)、OpenBMI数据集和两个来自慢性卒中患者的大型数据集。结果表明,FBCNet为bbic - iv -2a数据集建立了新的SOTA, 4类分类准确率达到76.20%。在其他三个数据集上,FBCNet的二值分类准确率提高了8%。此外,使用可解释的人工智能技术,我们提出了关于健康受试者和中风患者之间判别性脑电图特征差异的首批报告之一。

1、Introduction:

本文的主要贡献如下:

1.提出了一种紧凑且受神经生理学启发的CNN架构FBCNet,用于MI分类

2.为有效提取脑电图时间信息和减少参数,提出了一种新颖的方差层。

3.在慢性中风患者心肌梗死解码中首次将经典机器学习算法和深度学习构架进行了比较

4..我们的研究表明,对于中风患者,经典的机器学习方法可能优于通用的深度学习架构,但在FBCNet中所做的那样,仔细融合深度学习方法和MI的神经生理学知识,可以对健康受试者和中风患者实现最佳的分类精度。

2、Related Works:

许多经典的机器学习技术已经被提出用于EEG-MI分类,在[12]中可以找到它们的广泛总结。其中,FBCSP是最成功的算法之一[6],其设计理念与FBCNet相似。因此,我们直接比较FBCNet和FBCSP的结果。

近年来,许多深度学习架构也被提出用于EEG-BCI领域[7]-[10],[21]。其中,Deep ConvNet[7]和EEGNet[9]是在EEG社区中得到广泛应用的两种架构,并提供了开源代码实现。因此,我们使用这两种架构与FBCNet在所有评估数据集中进行比较。最后,我们根据BCI竞争IV-2a数据集上报告的准确性,将FBCNet与许多最新架构的性能进行了比较。

3、Method:

FBCNet的设计目的是有效地提取MI特征的光谱空间判别信息,同时避免小数据集存在的过拟合问题。FBCNet架构的核心由以下四个阶段组成:

1.多视角数据表示:通过多个窄的带通滤波器对原始脑电图进行频谱滤波,得到脑电数据的多视图表示。

2.空间转换学习:然使用深度卷积层学习每个视图的空间判别模式。

3.时间特征提取:在空间变换的基础上,采用一种新的方差层来有效地提取时间信息

FBCNet模型图

模型解析:

3.1 Spectral Localization by Multi-view Data Representation

其中,输入数据 Raw EEG:

标签y:

C:通道数;T:时间点,Nc:不同类别总数

脑电数据中与心肌梗死相关的信息存在于mu (8- 12hz)和beta (12-32Hz)频段,所以为了定位到这种判别信息,使用多视角数据表示:其中每一个视图代表一个不同频段的滤波器。

多视图表示为:

其中,原始EEG信号=x(上面已提到),滤波器组为:

滤波器组F由Nb个时间滤波器构成,对原始脑电信号x进行滤波操作,沿着XFB的第三维度——时间序列变化进行频谱局域化,即:

其中,

是带通滤波

问题:对于每个滤波器截止频段的设计,论文指出:

1.滤波器组F本可以由任意数量的截止频率不同的滤波器组成

2.但本模型使用Nb=9个滤波器组成滤波器组,每个频带4hz,从4-40hz,每4hz一段(4- 8,8 -12,…), 36-40赫兹)

3.滤波使用切比雪夫II型滤波器过渡带宽为=2Hz阻带纹波为=-30dB

以上这种滤波器组的选择源于FBCSP算法中提出的传统脑电图神经学显著谱带划分,该划分方法已被证明实现了良好的分类精度。

3.2 Spatial Localization by CNN

使用空间卷积块实现EEG信号的空间定位:

Spatial Convolution Block(SCB) = Depth_Conv2d+BN+Swish,kernel_size=(C,1)

注意:

1.深度卷积的使用导致每个滤波器只与一个频带EEG相关联,深度参数m控制每个频带的空间滤波器的数量。

2.卷积核(C,1)可以跨越所有通道,有效地充当空间过滤器

3.在每个卷积核的权重上使用最大范数=2来正则化每个卷积核

此时,之前滤波器组输出为

SCB输出:

所以,SCB输出的时间序列为:

其中,m=32

3.3 Temporal Feature Extraction by Variance Layer

原始EEG数据通常沿时间维度包含大量特征,这些特征表现出最大的类内方差和高噪声含量。因此,为了避免分类模型的过拟合,有必要通过有效提取最相关的时间信息来降低时间维特征。最大池化或平均池化策略是用于降低特征维数的最常用技术。然而,考虑到不同类型的MI的频谱功率(ERD/ERS)不同,方差运算代表给定时间序列的频谱功率成为EEG时间表征更合适的选择。因此,为了有效地提取时间判别信息,我们提出了一种新的方差层,该层通过计算时间序列的方差来表征时间序列。在正向传递中,对于任意时变信号g(t)方差层的输出为:

其中,T=时间总点数;u是g(t)的平均值

在神经网络学习阶段(反向传播阶段),方差层对脑电数据的影响更为显著。对于任意一个神经网络,如果:

方差层的输入损失,那么这一层对输入g(t)的反向传播损失Lg(t):

看出:

方差层的反向传播损耗ug(t)以及信号均值的偏差成正比。

所以:

方差层通过为这些点分配更高比例的输入梯度,为远离均值的信号点提供了更多的重要性。

并且:

这也与脑电图的特征相一致,其中以ERD或ERS的形式偏离平均值是心肌梗死的明显特征。

最后:

SCB的输出被传递到方差层,它计算大小为w的非重叠窗口中单个时间序列的时间方差,整个时间范围内应用方差层将特征的数量从:

减少到:

从而实现了高度的特征减少。窗口长度w=15

3.4 Classification

方差层提取的特征通激活,然后送给FC层。然后将FC的输出传递给softmax层,以获得每个类的输出概率。使用最大范数=0.5对FC层权值进行正则化:

4、Datasets

  1. BCIC-IV-2A Data: A 4 class MI data from BCI Competition IV Dataset 2A [26].

  2. OpenMBI Data: A 2 class MI data from Korea University EEG dataset [27].

  3. Stroke Data: A: A 2 class MI vs rest dataset [4].

  4. Stroke Data: B: A 2 class MI vs rest dataset [28].

5、 Experiments

10折交叉验证:9训练,1测试

Adam,Lr=0.001,betas=0.9,0.999

对数交叉熵损失

早停法,连续epoch=200停

6、Results

FBCNet在2a数据中Average_acc= 79%

7、Academician Dog Egg Black

不是,咱就是说你每天别光睡觉,睡起来就玩小球和逗猫棒,有点远大的抱负好不,比如通过你自己的努力,选上了工程院院士,我也好沾沾狗蛋你的光!

狗蛋:我就是一只小猫咪,我睡会觉咋了?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1325785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2017年第六届数学建模国际赛小美赛B题电子邮件中的笔迹分析解题全过程文档及程序

2017年第六届数学建模国际赛小美赛 B题 电子邮件中的笔迹分析 原题再现&#xff1a; 笔迹分析是一种非常特殊的调查形式&#xff0c;用于将人们与书面证据联系起来。在法庭或刑事调查中&#xff0c;通常要求笔迹鉴定人确认笔迹样本是否来自特定的人。由于许多语言证据出现在电…

pytorch-模型预测概率值为负数

在进行ocr识别模型预测的时候&#xff0c;发现预测的结果是正确的&#xff0c;但是概率值是负数&#xff1a; net_out net(img) #torch.Size([70, 1, 41]) logit, preds net_out.max(2) #41是类别 需要对类别取最大值 preds preds.transpose(1, 0).contiguous().view(-1) …

圆通单号查询,圆通速递物流查询,将指定派件员的单号筛选出来

批量查询圆通速递单号的物流信息&#xff0c;并将指定派件员的单号筛选出来。 所需工具&#xff1a; 一个【快递批量查询高手】软件 圆通速递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;第一次使用的伙伴记得先注册&#xff…

AIGC:阿里开源大模型通义千问部署与实战

1 引言 通义千问-7B&#xff08;Qwen-7B&#xff09;是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样&#xff0c;覆盖广泛&#xff0c;包括大量网络文本、专业书籍…

JS模块化规范之CMD

JS模块化规范之CMD 模块化规范CMD&#xff08;Common Module Definition&#xff09;概念基本语法CMD实现 模块化规范 CMD&#xff08;Common Module Definition&#xff09; 概念 CommonJS module definition CMD规范专门用于浏览器端&#xff0c;模块的加载时异步的&#x…

macOS 开发 - 报错 Expected expression(空格问题)

文章目录 问题尝试解决方式 问题 一个简单的 查找沙盒内文件的代码&#xff0c;编译不通过&#xff0c;很郁闷 尝试 可以肯定 NSBundle 代码这么写没问题&#xff0c;即使重敲还是报错&#xff1b; 换个位置&#xff0c;甚至 mainBundle 都无法提示出来。 重启 Xcode 也无法…

钓鱼篇(中)

鱼竿感知 鱼竿感知系统其实非常重要&#xff0c;比如鱼儿上钩&#xff0c;你还一直弹窗&#xff0c;这样是个小白也能知道不正常。那么如何做好一个简单的感知系统呢&#xff1f;其实非常简单,这里我丢一个简单的demo,实际上它是可以写成一个框架的(这个先不考虑放出来) 这里…

5-高可用-降级

在开发高并发系统时&#xff0c;有很多手段来保护系统&#xff0c;如缓存、降级和限流等。 当访问量剧增、服务出现问题(如响应时间长或不响应)或非核心服务影响到核心流程的性能时&#xff0c;仍然需要保证服务还是可用的&#xff0c;即使是有损服务。 系统可以根据一些关键…

论文解读:On the Integration of Self-Attention and Convolution

自注意力机制与卷积结合&#xff1a;On the Integration of Self-Attention and Convolution(CVPR2022) 引言 1&#xff1a;卷积可以接受比较大的图片的&#xff0c;但自注意力机制如果图片特别大的话&#xff0c;运算规模会特别大&#xff0c;即上图中右边(卷积)会算得比较快…

c语言:求算数平均数|练习题

一、题目 输入3个数&#xff0c;求这三个数的算术平均数 二、代码图片【带注释】 三、源代码【带注释】 #include <stdio.h> #include<math.h> //输入正整数a、b、c的值&#xff0c; //求其算术平均值,并保留两个小数位输出 int pass0;//定义一个开关&#xff0c;…

《JVM由浅入深学习【一】 2023-12-19》JVM由简入深学习提升

JVM由浅入深一&#xff08;类加载&#xff09; JVM的类加载1. java运行时是什么时候被加载的&#xff1f;2. JVM类加载过程大致阶段3. 父类与子类初始化各个类型顺序4. 什么是类加载器&#xff1f;6. 双亲委派机制 JVM的类加载 1. java运行时是什么时候被加载的&#xff1f; …

win10部署安装Elasticsearch8.1.2

环境准备&#xff1a;JDk是1.8以上版本 1、官方下载Elasticsearch部署安装 访问官网,进入主页下载。 2、在下载页面&#xff0c;可以看到选择操作系统&#xff0c;选择系统后点击下载。&#xff08;我这里下载的Windows版本&#xff09; 3下载完成后&#xff0c;解压文件&am…

多级缓存:亿级流量的缓存方案

文章目录 一.多级缓存的引入二.JVM进程缓存三.Lua语法入门四.多级缓存1.OpenResty2.查询Tomcat3.Redis缓存预热4.查询Redis缓存5.Nginx本地缓存6.缓存同步 一.多级缓存的引入 传统缓存的问题 传统的缓存策略一般是请求到达Tomcat后&#xff0c;先查询Redis&#xff0c;如果未…

FA2016ASA (MHz范围晶体单元,内置热敏电阻) 汽车

FA2016ASA是爱普生推出的一款内置热敏电阻、频率范围为38.4MHz的晶振&#xff0c;确保数据的准确传输&#xff0c;同时有效避免频谱干扰的出现。可以在-40C to 125C 的温度内稳定工作。在汽车内部空间有限的情况下&#xff0c;FA2016ASA以其小型超薄的外形尺寸2.0 1.6 0.68mm…

【分享】如何给Excel加密?码住这三种方法!

想要给Excel文件进行加密&#xff0c;方法有很多&#xff0c;今天分享三种Excel加密方法给大家。 打开密码 设置了打开密码的excel文件&#xff0c;打开文件就会提示输入密码才能打开excel文件&#xff0c;只有输入了正确的密码才能打开并且编辑文件&#xff0c;如果密码错误…

Jenkins 构建环境指南

目录 Delete workspace before build starts&#xff08;常用&#xff09; Use secret text(s) or file(s) &#xff08;常用&#xff09; Add timestamps to the Console Output &#xff08;常用&#xff09; Inspect build log for published build scans Terminate a …

MFC 消息映射机制

目录 消息映射机制概述 宏展开 宏展开的作用 消息映射机制的执行流程 消息处理 消息映射机制概述 MFC的消息映射映射机制是可以在不重写WindowProc虚函数的大前提下&#xff0c;仍然可以处理消息。 类必须具备的要件 类内必须添加声明宏 DECLARE_MESSAGE_MAP() 类外…

【音视频 | AAC】AAC格式音频文件解析

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

33 在Vue3中如何通过插槽向父组件传值

概述 通过插槽向父组件传值&#xff0c;是一种比较高级的&#xff0c;但是非常使用的技术&#xff0c;在很多UI组件库里面经常看到。 这节课我们来学习一下这种用法。 基本用法 我们创建src/components/Demo33.vue&#xff0c;代码如下&#xff1a; <script setup> …

U盘无法读取怎么办?U盘无法读取修复方法

U盘无法读取是常见的故障&#xff0c;可能的原因包括U盘驱动程序未安装、U盘损坏、文件系统损坏等。为了解决这个问题&#xff0c;可以尝试重新安装U盘驱动程序、格式化U盘、检查U盘是否损坏等方法。如果以上方法均无效&#xff0c;建议寻求专业人士的帮助。 U盘无法读取怎么办…