智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/15 20:09:13

智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于水基湍流算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.水基湍流算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用水基湍流算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.水基湍流算法

水基湍流算法原理请参考:https://blog.csdn.net/u011835903/article/details/121785889
水基湍流算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


水基湍流算法参数如下:

%% 设定水基湍流优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明水基湍流算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1325027.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Super访问父类成员

1 问题 当子类的成员变量或方法与父类同名时,可能模糊不清,应该怎么解决?如果子类重写了父类的某一个方法,我们又该怎么调用父类的方法? 2 方法 super调用成员属性: 当父类和子类具有相同的数据成员时&…

面向 NLP 任务的大模型 Prompt 设计

很久之前,我们介绍到,prompt是影响下游任务的关键所在,当我们在应用chatgpt进行nlp任务落地时,如何选择合适的prompt,对于SFT以及推理环节尤为重要。 不过,硬想不是办法,我们可以充分参考开源的…

小程序面试题 | 07.精选小程序面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

语音识别与人机交互:发展历程、挑战与未来前景

导言 语音识别技术作为人机交互领域的重要组成部分,近年来取得了巨大的发展。本文将深入研究语音识别与人机交互的发展历程、遇到的问题、解决过程、未来的可用范围,以及在各国的应用和未来的研究趋势。我们将探讨在这个领域,哪一方能取得竞争…

47 星南二楼

动态规划&#xff0c;相当于求解最长子序列问题 #include <iostream> using namespace::std; using std::cout; using std::cin; int n; int a[5100],dp[5100];int xnel(int n, int a[]) {int result 0;for(int i0; i<n; i){for(int j0; j<i; j){if(a[j]<a[…

每日一博 - Protobuf vs. Protostuff:性能、易用性和适用场景分析

文章目录 历史区别联系性能差异最佳实践场景分析小结 历史 对于Protostuff和Protobuf的关系&#xff0c;需要了解它们的起源和发展。 Protobuf&#xff08;Protocol Buffers&#xff09;是由Google开发的一种数据序列化格式&#xff0c;用于结构化数据的存储和交换。它最初是…

损失函数中正则化中的平方项的作用!!

正则化上的平方项 前言在损失函数中添加正则化项时&#xff0c;通常会使用平方项作为正则化项&#xff0c;原因主要有以下几点&#xff1a; 前言 在损失函数中添加正则化项的原因主要是为了防止过拟合。正则化是一种常用的防止过拟合的技术&#xff0c;它可以对模型的复杂度进…

java反射的实战教程(简单且高效)

1. 参考 建议按顺序阅读以下文章 学了这么久的java反射机制&#xff0c;你知道class.forName和classloader的区别吗&#xff1f; Java反射&#xff08;超详细&#xff01;&#xff09; 2. 实战 2.1 通过Class.forName()方法获取字节码 这个方法会去我们的操作系统寻找这个cl…

linux、widnows的免费局域网桌面远程工具之NoMachine

统信UOS、银河麒麟及其他的linux桌面系统/windows系统都可进行远程桌面操作使用。 1.先到官网下载https://downloads.nomachine.com/自己使用的软件版本。 2.首先下载windwos端的的版本64位进行安装&#xff0c;安装是先暂时退出windows的杀毒软件&#xff0c;以免提示你各种确…

RabbitMQ入门指南(三):Java入门示例

专栏导航 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、AMQP协议 1.AMQP 2.Spring AMQP 二、使用Spring AMQP实现对RabbitMQ的消息收发 1.案例准备阶段 2.入门案例&#xff08;无交换机&#xff09; 3.任务模型案例&#xff08;Work Queues&#xff0…

论文笔记:Accurate Localization using LTE Signaling Data

1 intro 论文提出LTELoc&#xff0c;仅使用信令数据实现精准定位 信令数据已经包含在已在LTE系统中&#xff0c;因此这种方法几乎不需要数据获取成本仅使用TA&#xff08;时序提前&#xff09;和RSRP【这里单位是瓦】&#xff08;参考信号接收功率&#xff09; TA值对应于信号…

5.6 Linux rsync 服务

1、rsync 概念介绍 官方网站&#xff1a;rsync rsync(Remote Sync) 是一个Unix/linux系统下的文件同步和传输工具。Rsync通过“rsync算法”提供了一个客户机和远程服务器的文件同步的快速方法。 采用C/S模式 端口tcp:873 a. rsync 特性 ① 可以镜像保存整个目录树和文件系…

月薪30k的软件测试工程师,是一个什么样的工作状态?

一位大佬的亲身经历 用了大概6年的时间&#xff0c;成为了年薪30w的测试开发。 回顾我从功能测试到测试开发的成长路径&#xff0c;基本上是伴随着“3次能力飞跃”实现的。 年名企大厂测试岗位内推文末获取&#xff01;2022年名企大厂测试岗位内推文末获取&#xff01; 第一…

OpenCV消除高亮illuminationChange函数的使用

学更好的别人&#xff0c; 做更好的自己。 ——《微卡智享》 本文长度为1129字&#xff0c;预计阅读4分钟 导语 上一篇《OpenCV极坐标变换函数warpPolar的使用》中介绍了极坐标变换的使用&#xff0c;文中提到过因为手机拍的照片&#xff0c;部分地方反光厉害。OpenCV本身也有一…

使用yarn安装electron时手动选择版本

访问1Password或者其他可以提供随机字符的网站&#xff0c;获取随机密码运行安装命令 操作要点&#xff0c;必须触发Couldnt find any versions for "electron" that matches "*"才算成功 将复制的随机密码粘贴到后面 例如&#xff1a;yarn add --dev elec…

CAS-源码分析引出Unsafe类、Unsafe类详解

CASDemo演示 public class CASDemo {public static void main(String[] args) {AtomicInteger atomicInteger new AtomicInteger(5);System.out.println(atomicInteger.compareAndSet(5, 2022) "\t" atomicInteger.get());//true 2022System.out.println(atomicI…

vit-transfomers 逐段精读

Vision Transformer Explained | Papers With Code 有趣的特性 在cnn中处理的不太好&#xff0c;但是在transformers 都能处理的很好的例子。 Intriguing Properties of Vision Transformers | Papers With Code 标题 AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE…

基于ETM+遥感数据的城市热岛效应现状研究的解决方案

1.引言 城市热岛效应&#xff08;Urban Heat Island Effect&#xff09;是指城市中的气温明显高于外围郊区的现象。在近地面温度图上&#xff0c;郊区气温变化很小&#xff0c;而城区则是一个高温区&#xff0c;就像突出海面的岛屿&#xff0c;由于这种岛屿代表高温的城市区域&…

【已解决】vs2015操作创建声明定义由于以下原因无法完成

本博文解决这样的一个问题&#xff0c;就是vs2015下用qt&#xff0c;在快速创建槽函数时给笔者报了个错误&#xff0c;错误的完整说法是这样子的”操作创建声明/定义“由于下列原因无法完成&#xff0c;所选的文本不包含任何函数签名。第一次遇到这种花里胡哨的问题&#xff0c…

[CVPR-23] PointAvatar: Deformable Point-based Head Avatars from Videos

[paper | code | proj] 本文的形变方法被成为&#xff1a;Forward DeformationPointAvatar基于点云表征动态场景。目标是根据给定的一段单目相机视频&#xff0c;重建目标的数字人&#xff0c;并且数字人可驱动&#xff1b;通过标定空间&#xff08;canonical space&#xff09…