管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜A/B

news2025/1/16 14:02:10

老规矩,看目录,平均3-5题

文章目录

  • A/B
    • 2023
      • 真题(2023-19)-A-选项特点:两个等号;-判断需联立的难易:难,看着感觉需要联立,所以判断联立需要有理论支撑,不然还是别感觉了;-纯蒙猜-哪个长选哪个【不要用这招,因为两个选项,总会有一个长的,那不就大多都是A/B,但其实每年平均3-5题】;
      • 真题(2023-22)-A选项特点:两个等号;-判断需联立的难易:难,看着感觉需要联立;-不要强行当成“取值范围”和“包含关系”
      • 真题(2023-25)-B-选项特点:两个大于号;不要强行当成“取值范围”和“包含关系”
    • 2022
      • 真题(2022-17)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2022-19)-B-选项特点:一个等号,一个特殊符号;
      • 真题(2022-22)-B-选项特点:两个已知X的值;看着像可以联立,所以其实光看,是看不出是否要联立的
    • 2021
      • 真题(2021-20)-A-无法判断条件是否需要联立;若用“一字之差”,也无法判断那个信息不完全
      • 真题(2021-22)-A-选项特点:两个已知X的值;-不要强行包含关系了-容易判断不需要联立,选A/B/D/E;
    • 2020
      • 真题(2020-16)-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D!!!错了
      • 真题(2020-23)A-选项特点:一个大于号,一个小于号;选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!
      • 真题(2020-24)-A-选项特点:两个等号;-先分析选项是否需要联合⇒不需要(这里不好判断是否需要)⇒单一型⇒选项间的关系⇒有包含关系⇒选范围小的,选B!!!错了
      • 真题(2020-25)-A-选项特点:两个等号;无法判断是否需要联立;-选项是两个等式,特值法
    • 2019
      • 真题(2019-18)A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2019-21)-B-边长关系推面积,选B
      • 真题(2019-24)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2019-25)-A-选项特点:两个等号;-先分析选项是否需要联合⇒不需要⇒单一型⇒选项间的关系⇒有包含关系,选范围小的,选A;-A-一字之差-两个条件相似程度较高,选信息量少的
    • 2018
      • 真题(2018-16)-A-选项特点:两个小于号;-先分析选项是否需要联合⇒不需要(看不出)⇒单一型⇒选项间的关系⇒无共边界反向范围,无包含关系⇒尝试特值法1;两个等号使用特值法;
      • 真题(2018-17)-B-选项特点:两个等号-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2018-24)-A-选项特点:两个大于号
    • 2017
      • 真题(2017-17)-A-选项特点:两个等号;
      • 真题(2017-19)-B-选项特点:两个大于号;
      • 真题(2017-21)-B-选项特点:两个已知X的值;要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2017-22)-A
      • 真题(2017-25)-A-选项特点:一个小于号,一个等号;容易误判选C,因为【一个不等号,一个等号,选C】
    • 2016
      • 真题(2016-16)-B-要素列表法-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;-B-数据分析-平均值-加权平均值
      • 真题(2016-18)-A-选项特点:两个等号;
      • 真题(2016-21)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;-A-数据分析-平均值与方差-方差是有平方,解出两个根,不能确定;容易误判联立,毕竟均值和方差看着就是一起的。
      • 真题(2016-23)-B-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;两个等号用特值法
      • 真题(2016-24)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;
    • 2015
      • 真题(2015-17)-A;-选项特点:两个大于等于号;
      • 真题(2015-18)-B;两个等号用特值法,但是这题用不了
      • 真题(2015-19)-B-选项特点:两个等号;
      • 真题(2015-21)-B-两个大于号;
    • 2014
      • 真题(2014-16)-A
      • 真题(2014-17)-选项特点:一个大于,一个小于;B-特值体系法-三、无解/恒成立型特值;-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!!!
      • 真题(2014-19)-A-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-条件偶次+结论奇次⟹不充分;
      • 真题(2014-20)-A-选项特点:两个已知X的值;
      • 真题(2014-21)-A-容易误判C,因为【一个定量,一个定性】
      • 真题(2014-25)-A-两个大于号
    • 2013

选A或B选项(只有一个条件充分,另一个不充分)
考试中10道题里最多5道,一般是4道,如果两条件复杂程度有明显差异时,可以使用以下技巧快速解答。
原则1:当两条件矛盾时(占近一半)由于A和B的选项可能要远远高于E,所以大家在做题时应该选择一个比较容易的条件下手,如果能成立,再去验证另一个选项,如果不成立,另一个条件成立的可能性很大。
原则2:当两条件有包含关系时,优先选择范围小的(A、B),做题时应先选择范围较大的先做,若范围较大的条件充分,则选D,若范围较大的不充分,则小范围成立的可能性非常大。
原则3:某一个条件对题干无作用,选另一个有作用的条件为充分。

纯蒙猜
原则1:印刷的长度明显不同时,选复杂的选项(简言之,哪个长选那个)
原则2:印刷长度相当时。包含考点相对较难、公式相对复杂、方法较难、运算量大的项更充分。
原则3:两条件是数值形式,数值复杂的优先充分;表现为:负大于正;不易整除大于易整除;绝对值大于不含绝对值;含根号大于不含根号;对数函数复杂程度大于指数函数复杂程度大于幂函数复杂程度。
原则4:一个为相对量的百分比,另一个为绝对量的数值,优先选百分比。

包含性选项秒杀-准确率80%-A/B
(1)条件2包含于条件1,选A或D,80%选A,20%选D。
(2)条件1包含于条件2,选B或D,80%选B,20%选D。

A/B型蒙猜
“条件题”:A/B型秒杀——【】
1.一字之差:即两个条件相似程度较高
例:条件(1): a n = 2 n − 1 ( n = 1 , 2 , . . . ) a_n=2n-1(n=1,2,...) an=2n1(n=1,2,...);条件(2): a n = 2 n ( n = 1 , 2 , . . . ) a_n=2n(n=1,2,...) an=2n(n=1,2,...)
一字之差拓展:一个条件信息不完全,选另一个;即虽然一字之差,但条件信息不完成;一个信息量大,一个信息量少,选择不言而喻。
例1:题干给出结论大于0.8,选B;
条件(1):0.81;条件(2):0.9;
有形如(=某数字)的等式约束范围限制的,选数小的。
例1:题干给出 a + b + c + d a+b+c+d a+b+c+d的最大值,选B。
条件(1): a b c d = 2700 abcd=2700 abcd=2700;条件(2): a d c d = 2000 adcd=2000 adcd=2000
例1:题干求 a , b , c a,b,c a,b,c的乘积,选A。
条件(1): a + b + 16 ; a+b+16; a+b+16条件(2): a + b + c = 20 a+b+c=20 a+b+c=20
2.共边界反向范围型
反向范围型:在这里插入图片描述
例1:题干求范围;选A;
条件(1): − 3 1 < k < 0 ; -\frac{\sqrt{3}}{1}<k<0; 13 k0条件(2): 0 < k < 2 2 0<k<\frac{\sqrt{2}}{2} 0k22

3.“暗”包含型范围 ⟹ \Longrightarrow 选大的
例:条件(1)与条件(2)是包含的; ⟹ \Longrightarrow 选项A包含B;则选包含多的。

4.面积比+边长比:即边长关系推面积时,往往选B;

5.几何中要确定一个要素
例:题干要确定一个要(无)X的值;即其一定与条件中的一个强相关;A or B

【总结:
“条件题”中A/B型秒杀:
(1)每个条件单独就够用(一眼看不大可能联合)
(2)两个条件不大可能都对;
分类如下:
1.一字之差:一个条件信息不完全,选另一个;
2.共边界反向范围型;
3.面积比+边长比;
4.几何中要确定一个要素;
5.“暗”包含型范围 ⟹ \Longrightarrow 选大的;】

A/B

2023

真题(2023-19)-A-选项特点:两个等号;-判断需联立的难易:难,看着感觉需要联立,所以判断联立需要有理论支撑,不然还是别感觉了;-纯蒙猜-哪个长选哪个【不要用这招,因为两个选项,总会有一个长的,那不就大多都是A/B,但其实每年平均3-5题】;

-几何-解析几何-最值
在这里插入图片描述
在这里插入图片描述

真题(2023-22)-A选项特点:两个等号;-判断需联立的难易:难,看着感觉需要联立;-不要强行当成“取值范围”和“包含关系”

-算术-质数-2,3,5,7,11,13,17,19,23,29-穷举法
在这里插入图片描述

在这里插入图片描述

真题(2023-25)-B-选项特点:两个大于号;不要强行当成“取值范围”和“包含关系”

-数据分析-概率-已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率

在这里插入图片描述
在这里插入图片描述

2022

真题(2022-17)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-算术-绝对值-绝对值号和未知数-线性和差-线性差最值:相减最大和最小,大小互减取最值,互为相反两边跑,后者居上描画好(“后者居上描画好”:是指在减号后面的绝对值的零点处取最大值,图像是楼梯的上层,由此可以描点画出图像。)
17.设实数𝑥𝑥满足 ∣ x − 2 ∣ − ∣ x − 3 ∣ = a |x-2|-|x-3|=a x2∣x3∣=a,则能确定𝑥的值。
(1) 0 < a ≤ 1 2 0<a≤\frac{1}{2} 0<a21
(2) 1 2 < a ≤ 1 \frac{1}{2}<a≤1 21<a1
在这里插入图片描述

真题(2022-19)-B-选项特点:一个等号,一个特殊符号;

-数列-等比数列
19.在△ 𝐴𝐵𝐶 中,𝐷 为 𝐵𝐶 边上的点, 𝐵𝐷 、 𝐴𝐵 、 𝐵𝐶 成等比数列,则 ∠𝐵𝐴𝐶 = 90°
(1)𝐵𝐷 = 𝐷𝐶。
(2) 𝐴𝐷 ⊥ 𝐵𝐶。
在这里插入图片描述

真题(2022-22)-B-选项特点:两个已知X的值;看着像可以联立,所以其实光看,是看不出是否要联立的

-代数-分式-升降幂法
22.已知𝑥为正实数,则能确定𝑥− 1 x \frac{1}{x} x1的值
(1)已知 x + 1 x {\sqrt{x}}+\frac{1}{\sqrt{x}} x +x 1的值
(2)已知 x 2 − 1 x 2 x^2-\frac{1}{x^2} x2x21的值
在这里插入图片描述

2021

真题(2021-20)-A-无法判断条件是否需要联立;若用“一字之差”,也无法判断那个信息不完全

-几何-解析几何-位置-线圆位置-相切-点到直线的距离公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)到 l l l的距离为 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2 ax0+by0+c
20.设a为实数,圆C: x 2 + y 2 = a x + a y x^2+y^2=ax+ay x2+y2=ax+ay,则能确定圆C的方程。
(1)直线 x + y = 1 x +y=1 x+y=1与圆C相切。
(2)直线 x − y = 1 x-y =1 xy=1与圆C相切。

在这里插入图片描述

真题(2021-22)-A-选项特点:两个已知X的值;-不要强行包含关系了-容易判断不需要联立,选A/B/D/E;

-应用题-出现了两个及以上未知量,而数量关系却少于未知量的个数-不定方程-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
22.某人购买了果汁、牛奶、咖啡三种物品,已知果汁每瓶12元,牛奶每瓶15元,咖啡每盒35元,则能确定所买各种物品的数量。
(1)总花费为104元。
(2)总花费为215元。
在这里插入图片描述

2020

真题(2020-16)-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D!!!错了

-几何-平面几何-三角形-心
16、在△ABC 中,∠B= 6 0 0 60^0 600,则 c / a > 2 c/a>2 c/a2
(1) ∠ C < 9 0 0 ∠C<90^0 C900
(2) ∠ C > 9 0 0 ∠C>90^0 C900
在这里插入图片描述

在这里插入图片描述

真题(2020-23)A-选项特点:一个大于号,一个小于号;选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!

特值法体系-两项特值与三项特值;
-A-代数-方程-一元二次方程-根的分布
23、设函数 f ( x ) = ( a x − 1 ) ( x − 4 ) f(x)=(ax-1)(x-4) f(x)=(ax1)(x4),则在 x = 4 左侧附近有 f ( x ) < 0 f(x)<0 f(x)0
(1) a > 1 4 a>\frac{1}{4} a41
(2) a < 4 a<4 a4
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

真题(2020-24)-A-选项特点:两个等号;-先分析选项是否需要联合⇒不需要(这里不好判断是否需要)⇒单一型⇒选项间的关系⇒有包含关系⇒选范围小的,选B!!!错了

-代数-不等式-均值不等式
24、设a, b 是正实数,则 1 a 1\over{a} a1+ 1 b 1\over{b} b1存在最小值。
(1)已知ab的值。
(2)已知a,b是方程 x 2 − ( a + b ) x + 2 = 0 x^2-(a+b)x+2=0 x2(a+b)x+2=0的两个不同实根。

在这里插入图片描述
在这里插入图片描述

真题(2020-25)-A-选项特点:两个等号;无法判断是否需要联立;-选项是两个等式,特值法

-优先验证不充分-验证不充分-难度降低-举反例-方法:定性判断-举反例:ad乘积固定,求两数和最大,得:a,b两数差别很大;-A-代数-不等式-均值不等式
25、设a, b, c, d 是正实数,则 a + b ≤ 2 ( b + c ) \sqrt{a}+\sqrt{b}≤\sqrt{2(b+c)} a +b 2(b+c)
(1) a + d = b + c a + d = b + c a+d=b+c
(2) a d = b c ad = bc ad=bc

在这里插入图片描述
在这里插入图片描述

2019

真题(2019-18)A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-几何-解析几何
18、直线 y = k x y =kx y=kx 与圆 x 2 + y 2 − 4 x + 3 = 0 x^{2}+ y^2−4x+3 =0 x2+y24x+3=0 有两个交点
(1) − 3 3 < k < 0 -{\sqrt{3}\over3}<k<0 33 k0
(2) 0 < k < 2 2 0<k<{\sqrt{2}\over2} 0k22

在这里插入图片描述
在这里插入图片描述

真题(2019-21)-B-边长关系推面积,选B

-几何-平面几何
21、如图,已知正方形 ABCD 面积,O 为 BC 上一点,P 为 AO 的中点,Q 为 DO 上一点,则能确定三角形 PQD 的面积。

在这里插入图片描述

(1)O 为 BC 的三等分点
(2)Q 为 DO 的三等分点

在这里插入图片描述
在这里插入图片描述

真题(2019-24)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-几何-解析几何
24、设三角区域D由直线 x + 8 y − 56 = 0 , x − 6 y + 42 = 0 x+8y-56=0,x-6y+42=0 x+8y56=0,x6y+42=0 k x − y + 8 − 6 k = 0 ( k < 0 ) kx-y+8-6k=0(k<0) kxy+86k=0(k0)围成,则对任意的 ( x , y ) (x,y) (x,y) l g ( x 2 + y 2 ) ≤ 2 lg(x^2+y^2)≤2 lg(x2+y2)2

(1) k ∈ ( − ∞ , − 1 ] k∈(-∞,-1] k(,1]
(2) k ∈ [ − 1 , − 1 8 ) k∈[-1,-{1\over8}) k[1,81)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2019-25)-A-选项特点:两个等号;-先分析选项是否需要联合⇒不需要⇒单一型⇒选项间的关系⇒有包含关系,选范围小的,选A;-A-一字之差-两个条件相似程度较高,选信息量少的

-数列-等差数列
25、设数列{ a n a_n an}的前n项和为 S n S_n Sn,则{ a n a_n an}等差
(1) S n = n 2 + 2 n , n = 1 , 2 , 3 S_n=n^2+2n,n=1,2,3 Sn=n2+2n,n=1,2,3
(2) S n = n 2 + 2 n + 1 , n = 1 , 2 , 3 S_n=n^2+2n+1,n=1,2,3 Sn=n2+2n+1,n=1,2,3

在这里插入图片描述

在这里插入图片描述

2018

真题(2018-16)-A-选项特点:两个小于号;-先分析选项是否需要联合⇒不需要(看不出)⇒单一型⇒选项间的关系⇒无共边界反向范围,无包含关系⇒尝试特值法1;两个等号使用特值法;

-代数-不等式-均值不等式
16.设 x, y 为实数,则 ∣ x + y ∣ ≤ 2 |x+y|≤2 x+y2
(1) x 2 + y 2 ≤ 2 x^2+y^2≤2 x2+y22
(2) x y ≤ 1 xy≤1 xy1
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-17)-B-选项特点:两个等号-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-B-数列-等差数列-求和公式: S n = n ( a 1 + a n ) 2 = n a n + 1 2 ( n 为偶数时,可虚拟小数) = n a 1 + n ( n − 1 ) 2 d = d 2 n 2 + ( a 1 − d 2 ) n S_n=\frac{n(a_1+a_n)}{2}=na_{\frac{n+1}{2}}(n为偶数时,可虚拟小数)=na_1+\frac{n(n-1)}{2}d=\frac{d}{2}n^2+(a_1-\frac{d}{2})n Sn=2n(a1+an)=na2n+1n为偶数时,可虚拟小数)=na1+2n(n1)d=2dn2+(a12d)n
17.{ a n a_n an}等差数列,则能确定 a 1 + a 2 + . . . + a 9 a_1+a_2+...+a_9 a1+a2+...+a9的值。
(1)已知 a 1 a_1 a1的值。
(2)已知 a 5 a_5 a5的值。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-24)-A-选项特点:两个大于号

-几何-解析几何-位置-线圆位置-转换为圆心点到直线距离公式

24.设a, b 实数,则圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y与直线 x + a y = b x+ay=b x+ay=b不相交。
(1) ∣ a − b ∣ > 1 + a 2 |a-b|>\sqrt{1+a^2} ab1+a2
(2) ∣ a + b ∣ > 1 + a 2 |a+b|>\sqrt{1+a^2} a+b1+a2
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2017

真题(2017-17)-A-选项特点:两个等号;

-几何-解析几何-圆的方程
17.圆 x 2 + y 2 − a x − b y + c = 0 x^2+y^2-ax-by+c=0 x2+y2axby+c=0与 x 轴相切,则能确定c 的值。
(1)已知a 的值
(2)已知b 的值
在这里插入图片描述
在这里插入图片描述

真题(2017-19)-B-选项特点:两个大于号;

-方程-一元二次方程-根的判别式
19.直线 y = a x + b y=ax+b y=ax+b与抛物线 y = x 2 y=x^2 y=x2 有两个交点.

(1) a 2 > 4 b a^2>4b a24b
(2) b >0
在这里插入图片描述
在这里插入图片描述

真题(2017-21)-B-选项特点:两个已知X的值;要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-B-几何-立体几何
21.如图,一个铁球沉入水池中,则能确定铁球的体积。
(1)已知铁球露出水面的高度。
(2)已知水深及铁球与水面交线的周长。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2017-22)-A

-代数-函数-一元二次函数-最值
22.设a, b 是两个不相等的实数,则函数 f ( x ) = x 2 + 2 a x + b f(x)=x^2+2ax+b f(x)=x2+2ax+b 的最小值小于零。
(1)1, a, b成等差数列。
(2)1, a, b成等比数列。
在这里插入图片描述
在这里插入图片描述

真题(2017-25)-A-选项特点:一个小于号,一个等号;容易误判选C,因为【一个不等号,一个等号,选C】

-算术-绝对值
25.已知a, b, c 为三个实数,则min{ ∣ a − b ∣ , ∣ b − c ∣ , ∣ a − c ∣ |a-b|,|b-c|,|a-c| ab,bc,ac} ≤ 5 .
(1) ∣ a ∣ ≤ 5 , ∣ b ∣ ≤ 5 , ∣ c ∣ ≤ 5 |a|≤5,|b|≤5,|c|≤5 a5,b5,c5
(2) a + b + c = 15 a + b + c = 15 a+b+c=15
在这里插入图片描述
在这里插入图片描述

2016

真题(2016-16)-B-要素列表法-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;-B-数据分析-平均值-加权平均值

16.已知某公司男员工的平均年龄和女员工的平均年龄,则能确定该公司员工的平均年龄。
(1)已知该公司员工的人数。
(2)已知该公司男、女员工的人数之比。

在这里插入图片描述
在这里插入图片描述

真题(2016-18)-A-选项特点:两个等号;

-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
18.利用长度为a和b的两种管材能连接成长度为37的管道(单位:米)
(1)a = 3,b = 5
(2)a = 4,b = 6
在这里插入图片描述

真题(2016-21)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;-A-数据分析-平均值与方差-方差是有平方,解出两个根,不能确定;容易误判联立,毕竟均值和方差看着就是一起的。

21.设两组数据 S 1 S_1 S1:3、4、5、6、7和 S 2 S_2 S2:4、5、6、7、a,则能确定a的值。
(1) S 1 S_1 S1 S 2 S_2 S2的均值相等。
(2) S 1 S_1 S1 S 2 S_2 S2的方差相等。
在这里插入图片描述

真题(2016-23)-B-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;两个等号用特值法

B-代数-整式-立方公式-和与差的立方: a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3±b^3=(a±b)(a^2∓ab+b^2) a3±b3=(a±b)(a2ab+b2);-代数-不等式-均值不等式
23.设 x, y 是实数,则可以确定 x 3 + y 3 x^3+y^3 x3+y3的最小值
(1) x y = 1 xy=1 xy=1
(2) x + y = 2 x+y=2 x+y=2
在这里插入图片描述

在这里插入图片描述
与立方有关的公式
和与差的立方 a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3±b^3=(a±b)(a^2∓ab+b^2) a3±b3=(a±b)(a2ab+b2)
立方和 a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)—— x 3 + 1 = ( x + 1 ) ( x 2 − x + 1 ) x^3+1=(x+1)(x^2-x+1) x3+1=(x+1)(x2x+1)——【三次和=一次和与二次和乘积,其中二次和要减一次积,三次喝=一次喝,二次喝见一刺激;二次核检一次记;三次核检=一次核检乘以二次核减见一次记;三次去喝酒=一次喝酒×二次喝酒被记录一次】
立方差 a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)—— x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 ) x^3-1=(x-1)(x^2+x+1) x31=(x1)(x2+x+1)
③拓展: x n − y n = ( x − y ) ( x n − 1 + x n − 2 y + x n − 3 y 2 + . . . + y n − 1 ) x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+y^{n-1}) xnyn=(xy)(xn1+xn2y+xn3y2+...+yn1)
完全立方 ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 (a±b)^3=a^3±3a^2b+3ab^2±b^3 (a±b)3=a3±3a2b+3ab2±b3——【每项都有3】
和立方 ( a + b ) 3 = a 3 + b 3 + 3 a 2 b + 3 a b 2 = a 3 + b 3 + 3 a b ( a + b ) (a+b)^3=a^3+b^3+3a^2b+3ab^2=a^3+b^3+3ab(a+b) (a+b)3=a3+b3+3a2b+3ab2=a3+b3+3ab(a+b)——【和立方比立方和多3倍乘积乘和】——【和立方=立方和+3倍乘积乘和】——【和的三次=三次和+三鸡和】
差立方 ( a − b ) 3 = a 3 − b 3 − 3 a 2 b + 3 a b 2 = a 3 − b 3 − 3 a b ( a − b ) (a-b)^3=a^3-b^3-3a^2b+3ab^2=a^3-b^3-3ab(a-b) (ab)3=a3b33a2b+3ab2=a3b33ab(ab)——【差立方比立方差少3倍乘积乘差】——【差立方=立方差-3倍乘积乘差】

真题(2016-24)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;

-A-代数-数列-递推公式-直接计算法
24.已知数列 a 1 , a 2 , a 3 , . . . , a 10 a_1,a_2,a_3,...,a_{10} a1,a2,a3,...,a10,则 a 1 − a 2 + a 3 − . . . + a 9 − a 10 ≥ 0 a_1-a_2+a_3-...+a_9-a_{10}≥0 a1a2+a3...+a9a100
(1) a n ≥ a n + 1 , n = 1 , 2 , . . . , 9 a_n≥a_{n+1},n=1,2,...,9 anan+1,n=1,2,...,9
(2) a n 2 ≥ a n + 1 2 , n = 1 , 2 , . . . , 9 a_n^2≥a_{n+1}^2,n=1,2,...,9 an2an+12,n=1,2,...,9
在这里插入图片描述

2015

真题(2015-17)-A;-选项特点:两个大于等于号;

-代数-不等式
17.已知a, b 为实数,则 a ≥ 2 a ≥ 2 a2 b ≥ 2 b ≥ 2 b2
(1) a + b ≥ 4 a + b ≥ 4 a+b4
(2) a b ≥ 4 ab ≥ 4 ab4
在这里插入图片描述
在这里插入图片描述

真题(2015-18)-B;两个等号用特值法,但是这题用不了

-代数-整式分式
18. 已知 p, q 为非零实数. 则能确定 p q ( p − 1 ) \frac{p}{q(p-1)} q(p1)p的值.
(1) p + q = 1 p+q=1 p+q=1
(2) 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1
在这里插入图片描述
在这里插入图片描述

真题(2015-19)-B-选项特点:两个等号;

-数据分析-概率-已知元素的数量求概率⟹ 古典概型⟹ 两个排列组合相除计算概率或穷举法⟹ 分母是C运算,分子数量少用穷举,数量多用C运算
19. 信封中装有10 张奖券,只有1张有奖从信封中同时抽取2 张奖券,中奖的概率为 P ;从信封中每次抽取1张奖券后放回,如此重复抽取n 次,中奖的概率为Q ,则 P < Q P<Q PQ
(1) n = 2 n=2 n=2
(2) n = 3 n=3 n=3
在这里插入图片描述
在这里插入图片描述
不联立条件秒杀:条件(1)和条件(2)不能联立,选数值大的。如n=2,n=3,选n=3。
包含选项+定性判断秒杀:第一步:定性判断:题干“重复抽取n次,每抽取1张后放回”,得:Q与n正相关,递增关系。结论“P<Q”,得:Q越大越好,得:n越大越好。属于包含型选项题,数值越大越充分,由条件得:条件(1)包含于条件(2),选B或D,80%选B,20%选D。
在这里插入图片描述

真题(2015-21)-B-两个大于号;

-实数
21.已知 M = ( a 1 + a 2 + . . . + a n − 1 ) ( a 2 + a 3 + . . . + a n ) M=(a_1+a_2+...+a_{n-1})(a_2+a_3+...+a_n) M=(a1+a2+...+an1)(a2+a3+...+an) N = ( a 1 + a 2 + . . . + a n ) ( a 2 + a 3 + . . . + a n − 1 ) N=(a_1+a_2+...+a_n)(a_2+a_3+...+a_{n-1}) N=(a1+a2+...+an)(a2+a3+...+an1),则M>N。
(1) a 1 > 0 a_1>0 a10
(2) a 1 a n > 0 a_1a_n>0 a1an0
在这里插入图片描述

在这里插入图片描述

2014

真题(2014-16)-A

-方程
16.已知曲线 l l l y = a + b x − 6 x 2 + x 3 y=a+bx-6x^2+x^3 y=a+bx6x2+x3,则 ( a + b − 5 ) ( a − b − 5 ) = 0 (a+b-5)(a-b-5)=0 (a+b5)(ab5)=0 .
(1)曲线 l l l过点 ( 1 , 0 ) (1,0) 1,0
(2)曲线 l l l过点 ( − 1 , 0 ) (-1,0) 1,0

在这里插入图片描述
在这里插入图片描述

真题(2014-17)-选项特点:一个大于,一个小于;B-特值体系法-三、无解/恒成立型特值;-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!!!

-B-代数-不等式-绝对值不等式;-代数-一元二次不等式-恒成立
17.不等式 ∣ x 2 + 2 x + a ∣ ≤ 1 |x^2+2x+a|≤1 x2+2x+a1的解集为空集。
(1) a < 1 a<1 a1
(2) a > 2 a>2 a2
在这里插入图片描述

在这里插入图片描述
方法二:见“ x 2 x^2 x2”首选配平方。 ∣ x 2 + 2 x + 1 + a − 1 ∣ ≤ 1 |x^2+2x+1+a-1|≤1 x2+2x+1+a1∣1,得: ∣ ( x + 1 ) 2 + ∣ a − 1 ∣ ∣ > 1 |(x+1)^2+|a-1||>1 (x+1)2+a1∣∣1,得: ( x + 1 ) 2 ≥ 0 (x+1)^2≥0 (x+1)20 a − 1 > 1 a-1>1 a11得: a − 1 > 1 a-1>1 a11,得: a > 2 a>2 a2
在这里插入图片描述

真题(2014-19)-A-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-条件偶次+结论奇次⟹不充分;

-代数-分式;-代数-整式-立方公式-和与差的立方: a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3±b^3=(a±b)(a^2∓ab+b^2) a3±b3=(a±b)(a2ab+b2)
19.设 x 是非零实数,则 x 3 + 1 x 3 = 18 x^3+\frac{1}{x^3}=18 x3+x31=18
(1) x + 1 x = 3 x+\frac{1}{x}=3 x+x1=3
(2) x 2 + 1 x 2 = 7 x^2+\frac{1}{x^2}=7 x2+x21=7
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

真题(2014-20)-A-选项特点:两个已知X的值;

-几何-平面几何-圆
20.如图 4 所示,O 是半圆的圆心,C是半圆上的一点,OD⊥AC,则能确定OD 的长。
(1)已知BC的长。
(2)已知AO的长。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

真题(2014-21)-A-容易误判C,因为【一个定量,一个定性】

-方程-一元二次方程-判别式- △ = b 2 − 4 a c △=b^2-4ac =b24ac
21.方程 x 2 + 2 ( a + b ) x + c 2 = 0 x^2+2(a+b)x+c^2=0 x2+2(a+b)x+c2=0 有实根。
(1) a, b, c 是一个三角形的三边长。
(2)实数a, b, c 成等差数列。
在这里插入图片描述
在这里插入图片描述

真题(2014-25)-A-两个大于号

-几何-解析几何-最值
25.已知 x, y 为实数,则 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1.
(1) 4 y − 3 x ≥ 5 4y - 3x ≥ 5 4y3x5
(2) ( x − 1 ) 2 + ( y − 1 ) 2 ≥ 5 (x-1)^2+(y-1)^2≥5 (x1)2+(y1)25
在这里插入图片描述

在这里插入图片描述

2013

真题(2013-16)-A-两个等号

-几何-解析几何-面积
16.已知平面区域D1={ ( x , y ) ∣ x 2 + y 2 ≤ 9 {(x,y)|x^2+y^2≤9} (x,y)x2+y29},D2={ ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ 9 {(x,y)|(x-x_0)^2+(y-y_0)^2≤9} (x,y)(xx0)2+(yy0)29},则 D 1 , D 2 D1,D2 D1D2覆盖区域的边界长度为 8 π 8π 8π
(1) x 0 2 + y 0 2 = 9 x_0^2+y_0^2=9 x02+y02=9
(2) x 0 + y 0 = 3 x_0+y_0=3 x0+y0=3
在这里插入图片描述
在这里插入图片描述

真题(2013-18)-B-两个等号

-几何-平面几何-三角形的形状判断
18.△ABC 的边长分别为a, b, c ,则△ABC 为直角三角形。
(1) ( c 2 − a 2 − b 2 ) ( a 2 − b 2 ) = 0 (c^2-a^2-b^2)(a^2-b^2)=0 (c2a2b2)(a2b2)=0
(2)△ABC 的面积为 1 2 a b \frac{1}{2}ab 21ab
在这里插入图片描述

真题(2013-19)-A-选项特点:两个等号;-特值法体系-两项特值与三项特值;-A-代数-函数-一元二次函数-判别式- △ = b 2 − 4 a c △=b^2-4ac =b24ac

19.已知二次函数 f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c,则方程为 f ( x ) = 0 f(x)=0 f(x)=0有两个不同实根。
(1) a + c = 0 a+c=0 a+c=0
(2) a + b + c = 0 a + b + c = 0 a+b+c=0
在这里插入图片描述
在这里插入图片描述

真题(2013-23)-B

-应用题-最值
23.某单位年终奖共发了100万元奖金,奖金金额分别是一等奖1.5万元、二等奖1万元、三等奖0.5万元,则该单位至少有100人。
(1)得二等奖的人数最多。
(2)得三等奖的人数最多。

在这里插入图片描述

真题(2013-24)-A

-数据分析-排列组合-不同元素的分配
24.三个科室的人数分别为6、3和2,因工作需要,每晚需要排3人值班,则在两个月中以便每晚值班人员不完全相同。
(1)值班人员不能来自同一科室。
(2)值班人员来自三个不同科室。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1324417.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【AI美图】第08期效果图,AI人工智能3D效果图,让创意和想象力在一张简单的底图上绽放!

让创意和想象力在一张简单的底图上绽放 探索未来&#xff0c;体验无限可能&#xff01;我们的AI技术可以将一张简单的底图转化为令人惊叹的3D效果图&#xff0c;让你瞬间拥有超凡的视觉体验。无论是房屋建筑、汽车设计、游戏开发&#xff0c;还是艺术创作&#xff0c;我们的AI…

LabVIEW开发振动数据分析系统

LabVIEW开发振动数据分析系统 自动测试系统基于LabVIEW平台设计&#xff0c;采用了多种高级硬件设备。系统的硬件组成包括PCB振动加速度传感器&#xff0c;这是一种集成了传统压电加速度传感器和电荷放大器的先进设备&#xff0c;能够直接与采集仪器连接。此外&#xff0c;系统…

漏洞复现-亿赛通任意文件读取漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

鸿蒙ArkTS语言介绍与TS基础法

1、ArkTS介绍 ArkTS是HarmonyOS主力应用开发语言&#xff0c;它在TS基础上&#xff0c;匹配ArkUI框架&#xff0c;扩展了声明式UI、状态管理等响应的能力&#xff0c;让开发者以更简洁、更自然的方式开发跨端应用。 JS 是一种属于网络的高级脚本语言&#xff0c;已经被广泛用…

精通服务器远程管理:全面指南

引言 在当今数字化世界中&#xff0c;IT专业人员和管理员能够远程管理服务器的能力是无价之宝。远程服务器管理不仅提高了效率&#xff0c;而且在无法物理访问服务器的情况下确保了持续的运营。本指南将深入探讨远程管理的不同类型、远程桌面的使用方法&#xff0c;以及如何安全…

ie-tab插件平替插件IEability-Open in IE

ie-tab插件仅可试用两周&#xff0c;之后就要收费 IEability-Open in IE可以平替 IE tab 下载IEability.exe并进行安装 在浏览器的输入界面输入搜索内容&#xff0c;点击插件按钮即可进入IE模式

sectigo多域名通配符证书

多域名通配符SSL证书是一种特殊的SSL证书&#xff0c;它综合了多域名SSL证书和通配符SSL证书的特点&#xff0c;可以同时保护多个泛域名以及它的主域名&#xff0c;适合域名多&#xff0c;子域名也比较多的单个或多个站点使用。今天就随SSL盾小编了解Sectigo旗下的DV多域名通配…

Node.js 工作线程与子进程:应该使用哪一个

Node.js 工作线程与子进程&#xff1a;应该使用哪一个 并行处理在计算密集型应用程序中起着至关重要的作用。例如&#xff0c;考虑一个确定给定数字是否为素数的应用程序。如果我们熟悉素数&#xff0c;我们就会知道必须从 1 遍历到该数的平方根才能确定它是否是素数&#xff…

基于YOLOv8的结核病预测系统设计与实现

一、项目背景 本系统的目的是通过痰液图像来检测出结核杆菌的携带者&#xff0c;及时采取治疗措施&#xff0c;在病情早期对其进行相关治疗减少结核病的传播。程序使用的样本是经过染色处理可以使得结核杆菌在显微镜拍摄的医学图像&#xff0c;通过检测医学图像中的结核杆菌诊…

ros2 学习03-开发工具vscode 插件配置

VSCode插件配置 为了便于后续ROS2的开发与调试&#xff0c;我们还可以安装一系列插件&#xff0c;无限扩展VSCode的功能。 中文语言包 Python插件 C插件 CMake插件 vscode-icons ROS插件 Msg Language Support Visual Studio IntelliCode URDF Markdown All in One VSCode支持的…

架构设计到底是什么?

文章目录 架构设计有哪些内容&#xff1f;架构原理与技术认知分布式技术原理与设计中间件常用组件的原理和设计问题数据库原理与设计问题分布式缓存原理与设计问题互联网高性能高可用设计问题 技术认知架构分析问题分析能力边界 架构设计&#xff0c;是中高级研发工程师逃不开的…

什么是集成测试?它和系统测试的区别是什么? 操作方法来了

01 什么是集成测试&#xff1f; 集成测试是软件测试的一种方法&#xff0c;用于测试不同的软件模块之间的交互和协作是否正常。集成测试的主要目的是确保不同的软件模块能够无缝协作&#xff0c;形成一个完整的软件系统&#xff0c;并且能够满足系统的需求和规格。 在集成测试…

理解pom.xml中的parent标签

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 循序渐进学SpringBoot ✨特色专栏&…

【设计模式--结构型--适配器模式】

设计模式--结构型--适配器模式 适配器模式概述结构案例类适配器模式对象适配器模式 应用场景 适配器模式 概述 将一个类的接口转换成客户希望的另一个接口&#xff0c;使得原本由于接口不兼容而不能一起工作的那些类能一起工作。 适配器模式分为类适配器模式和对象适配器模式…

《opencv实用探索·二十一》人脸识别

Haar级联分类器 在OpenCV中主要使用了两种特征&#xff08;即两种方法&#xff09;进行人脸检测&#xff0c;Haar特征和LBP特征。用的最多的是Haar特征人脸检测。 Haar级联分类器是一种用于目标检测的机器学习方法&#xff0c;它是一种基于机器学习的特征选择方法&#xff0c;…

如何下载知网论文、专利的PDF格式

知网的论文格式有其特有的格式&#xff1a;CAJ。将CAJ格式转化为Word或者PDF非常麻烦&#xff0c;且会出现乱码的情况&#xff0c;直接用知网官方的CAJ浏览器也不太方便。为此&#xff0c;困扰了许久。 其实&#xff0c;知网可以直接下载PDF格式&#xff0c;只需在浏览器上安装…

【halcon深度学习】create_dl_model_detection

基本介绍 create_dl_model_detection 不是一个封装的库函数&#xff0c;是一个算子。用于创建用于目标检测或实例分割任务的深度学习模型。 输入参数&#xff1a; Backbone (input_control): 指定用作背骨网络的深度学习分类器&#xff0c;充当模型的基础。用户可以选择不同的…

贝蒂快扫雷~(C语言)

✨✨欢迎大家来到贝蒂大讲堂✨✨ ​​​​&#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;贝蒂的游戏 贝蒂的主页&#xff1a;Betty‘s blog 引言&#xff1a; 扫雷相信大家小时候到玩过吧&#xff0c;那…

【python】在线代码混淆方案及注意事项

▒ 目录 ▒ &#x1f6eb; 导读开发环境 1️⃣ 在线网站pyob混淆操作步骤编写测试代码混淆转pyc缺点中文路径问题&#xff1a;python: Cant reopen .pyc file 2️⃣ 反编译python文件格式对比uncompyle6 3️⃣ 其它方案cpythonpython-obfuscatorPyInstaller【不推荐】pyminifie…

内网穿透工具frp安装使用

摘要&#xff1a;之前使用的 nps 目前没有维护更新了&#xff0c;和在使用的过程中做内网穿透的的网速应该有限制&#xff0c;不论云服务器带宽是多少&#xff0c;下载速度都比较慢。这里切换到 frp 试试&#xff0c;对安装和使用简单记录&#xff0c;其和 nps 有很大的操作配置…