智能优化算法应用:基于瞬态优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/17 7:33:57

智能优化算法应用:基于瞬态优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于瞬态优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.瞬态优化算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用瞬态优化算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.瞬态优化算法

瞬态优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121303562
瞬态优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


瞬态优化算法参数如下:

%% 设定瞬态优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明瞬态优化算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1323083.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

中小型企业怎么选SD-WAN?

随着网络技术的发展,SD-WAN作为一种高效灵活的网络连接被越来越多的企业选用。在SD-WAN的组网过程中,中小型企业需要怎么做,以确保SD-WAN的成功实施?本文将详细介绍中小型企业在SD-WAN组网时需要考虑的关键因素,助力企…

IDEA shorten command line介绍和JAR manifest 导致mybatis找不到接口类处理

如果类路径太长,或者有许多VM参数,程序就无法启动。原因是大多数操作系统都有命令行长度限制。在这种情况下,IntelliJIDEA将试图缩短类路径。最好选中 classpath file模式。 shorten command line 选项提供三种选项缩短类路径。 none&#x…

node.js mongoose中间件(middleware)

目录 简介 定义模型 注册中间件 创建doc实例,并进行增删改查 方法名和注册的中间件名相匹配 执行结果 分析 错误处理中间件 手动抛出错误 注意点 简介 在mongoose中,中间件是一种允许在执行数据库操作前(pre)或后&…

机器学习---聚类(原型聚类、密度聚类、层次聚类)

1. 原型聚类 原型聚类也称为“基于原型的聚类” (prototype-based clustering),此类算法假设聚类结构能通过一 组原型刻画。算法过程:通常情况下,算法先对原型进行初始化,再对原型进行迭代更新求解。著 名的原型聚类算法&#…

SQL进阶理论篇(十四):CBO优化器是如何计算代价的?

文章目录 简介能调整的代价模型的参数有哪些?mysql.server_costmysql.engine_cost 如何修改这些代价参数?代价模型具体是如何计算的参考文献 简介 大部分RDBMS都支持基于代价的优化器CBO,但其实CBO仍然存在缺陷(比如参数配置的不…

OpenAI 疑似正在进行 GPT-4.5 灰度测试!

‍ 大家好,我是二狗。 今天,有网友爆料OpenAI疑似正在进行GPT-4.5灰度测试! 当网友询问ChatGPT API调用查询模型的确切名称是什么时? ChatGPT的回答竟然是 gpt-4.5-turbo。 也有网友测试之后发现仍然是GPT-4模型。 这是有网友指…

解决腾讯云CentOS 6硬盘空间不足问题:从快照到数据迁移

引言: 随着数据的不断增加,服务器硬盘空间不足变成了许多运维人员必须面对的问题。此主机运行了httpd(apache服务),提供对外web访问服务,web资源挂载在**/data/wwwroot目录下,http日志存放在/data/wwwlogs目录下&…

【MATLAB源码-第101期】基于matlab的蝙蝠优化算BA)机器人栅格路径规划,输出做短路径图和适应度曲线。

操作环境: MATLAB 2022a 1、算法描述 蝙蝠算法(BA)是一种基于群体智能的优化算法,灵感来源于蝙蝠捕食时的回声定位行为。这种算法模拟蝙蝠使用回声定位来探测猎物、避开障碍物的能力。在蝙蝠算法中,每只虚拟蝙蝠代表…

【Hadoop精讲】HDFS详解

目录 理论知识点 角色功能 元数据持久化 安全模式 SecondaryNameNode(SNN) 副本放置策略 HDFS写流程 HDFS读流程 HA高可用 CPA原则 Paxos算法 HA解决方案 HDFS-Fedration解决方案(联邦机制) 理论知识点 角色功能 元数据持久化 另一台机器就…

SpringCloud微服务 【实用篇】| Docker镜像、容器、数据卷操作

目录 一:Docker基本操作 1. 镜像操作 镜像相关命令 2. 容器操作 容器相关命令 3. 数据卷(容器数据管理) 数据卷 操作数据卷 挂载数据卷 挂载的方式区别 前些天突然发现了一个巨牛的人工智能学习网站,通俗易懂&#xff0…

MySQL面试经典50题

本文使用的MySQL版本为5.7.21,需要的数据表创建如下: 1.学生表student(SId,Sname,Sage,Ssex) --SId 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 create table Student(SId varchar(10),Sname varchar(10),Sage datetime,Ssex varchar(10))…

jdk 线程池与 tomcat 线程池对比

一、线程池的作用 1. 提高性能:线程的创建需要开辟虚拟机栈、本地方法栈、程序计数器等线程私有空间,同时也会一比一的创建一个内核线程,在线程销毁时需要回收这些系统资源。频繁地创建和销毁线程会大大浪费系统资源,这时候就需要…

2023_Spark_实验三十:测试Flume到Kafka

实验目的:测试Flume采集数据发送到Kafka 实验方法:通过centos7集群测试,将flume采集的数据放到kafka中 实验步骤: 一、 kafka可视化工具介绍 Kafka Tool是一个用于管理和使用Apache Kafka集群的GUI应用程序。 Kafka Tool提供了…

《点云处理》 点云去噪

前言 通常从传感器(3D相机、雷达)中获取到的点云存在噪点(杂点、离群点、孤岛点等各种叫法)。噪点产生的原因有不同,可能是扫描到了不想要扫描的物体,可能是待测工件表面反光形成的,也可能是相…

原子学习笔记2——输入设备应用编程

一、输入类设备介绍 1、输入设备 常见的输入设备有鼠标、键盘、触摸屏、遥控器、电脑画图板等,用户通过输入设备与系统进行交互。 2、input子系统 常见的输入设备有鼠标、键盘、触摸屏、遥控器、电脑画图板等,用户通过输入设备与系统进行交互。 基于…

docker 在线安装redis

1、远程仓库拉取redis镜像, docker pull redis,默认拉取最新版本 2、在本地宿主机文件夹下创建相关目录文件,供容器卷使用,创建 /usr/local/data/redisdocker/data 文件夹,准备一个纯净版 redis.conf 配置文件 &#x…

【Linux】ip命令使用

ip命令 用于管理与配置网络接口和路由表。 ip命令的安装 ip 命令来自 iproute2 软件包,在 CentOS 7 中默认已安装。 yum install -y iproute 语法 ip [ OPTIONS ] OBJECT { COMMAND | help }ip [ -force ] -batch filename选项及作用 执行令 : ip …

el-form与el-upload结合上传带附件的表单数据(后端篇)

1.写在之前 本文采用Spring Boot MinIO MySQLMybatis Plus技术栈,参考ruoyi-vue-pro项目。 前端实现请看本篇文章el-form与el-upload结合上传带附件的表单数据(前端篇)-CSDN博客。 2.需求描述 在OA办公系统中,流程表单申请人…

【SQL】根据年月,查询月份中每一天的数据量

传入YYYY-MM-01&#xff0c;查询这个月中每一天的数据量&#xff0c;没有数据的天数用0表示 WITH RECURSIVE DateRange AS (SELECT :startDate AS DateUNION ALLSELECT DATE_ADD(Date, INTERVAL 1 DAY) FROM DateRangeWHERE Date < LAST_DAY(:startDate) ) SELECTdr.Date,CO…

从 MySQL 到 DolphinDB,Debezium + Kafka 数据同步实战

Debezium 是一个开源的分布式平台&#xff0c;用于实时捕获和发布数据库更改事件。它可以将关系型数据库&#xff08;如 MySQL、PostgreSQL、Oracle 等&#xff09;的变更事件转化为可观察的流数据&#xff0c;以供其他应用程序实时消费和处理。本文中我们将采用 Debezium 与 K…