传统软件集成AI大模型——Function Calling

news2025/1/11 2:41:12

传统软件和AI大模型的胶水——Function Calling

  • 浅谈GPT对传统软件的影响
  • Function Calling做了什么,为什么选择Function Calling
  • Function Calling简单例子,如何使用
  • 使用场景

浅谈GPT对传统软件的影响

目前为止好多人对chatGPT的使用才停留在OpenAI自己提供的网页端上,也许对GPT的了解还不够深入。最近稍微看了些大模型相关的内容深刻感觉到大模型技术对软件行业的影响。
本人并非数学专业,对大模型的理解也仅仅只是看了下transformar模型以及简单fine turn的原理。 了解到大模型本质其实是根据概率推断出下一个token输出。 不过就是这些,也足以让传统软件行业在使用方面得到极大的提升。

Function Calling做了什么,为什么选择Function Calling

大模型可计算得到使用者的prompt对应输出,但是大模型的数据都是基于以往的数据训练出来的。诸如“今天是什么日子”,“明天的气温是多少度”等超过统计数据范围的简单问题,纵使是目前世界上最强大的大模型-ChatGPT4.0 也无法回答,并且也永远回答不了。 那么如何让大模型能够满足这种应用场景呢?
OpenAI公司首先给出了解决方案——Plugins。 Plugins允许用户在使用时手动选择若干个插件, 当需要用到这个插件时,gpt会主动去调用此插件,来满足使用场景。 这就涉及到两个问题。 1.用户并不在意到底要使用哪些插件,我只要你能回答我问题就行。 2. 如果有多个插件实现了类似的功能, gpt该作何选择。 一句话:表面上看,用户需要AI能够满足自己的各种需求,实际上,用户更希望在自己的某个需求中集成了AI。
于是,OpenAI公司提出了Function Calling。 家里的电脑没有画图软件, 下面我用文字图简单介绍下

【用户prompt,并注册用户自己的外部函数库】 ----> 【大模型】 —>(匹配了外部函数库)—>【触发function calling响应,携带外部函数库的参数】
—>(没匹配外部函数库) —> 【大模型自己处理】

由此,之前听公司里人谈起的“能不能让AI辅助使用我们的产品”得到实现。 得益于大模型出色的文档处理能力,可以以外部函数为跳板,使传统软件的接口能正确被大模型所调用。 比如,针对一个安防软件平台的操作。 输入“帮我将10.30.20.222”的IPC加入到设备管理中。 将成为现实。 也会打破传统非0即1的编程逻辑。 理论上,任何软件都能为自己定制一个“能听得懂人话”的软件助手。

Function Calling简单例子,如何使用

先直接上OpenAI官方的例子。 值得注意的是,OpenAI接口更新得特别频繁,如果代码无法正常运行,可以将OpenAI版本更新到和我一样的版本
在这里插入图片描述

from openai import OpenAI
import json
import os

# funciton calling test

open_ai_key = os.getenv('OpenAIKey')

client =OpenAI(
                api_key = open_ai_key)

# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
    """Get the current weather in a given location"""
    if "tokyo" in location.lower():
        return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})
    elif "san francisco" in location.lower():
        return json.dumps({"location": "San Francisco", "temperature": "72", "unit": unit})
    elif "paris" in location.lower():
        return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})
    else:
        return json.dumps({"location": location, "temperature": "unknown"})

def run_conversation():
    # Step 1: send the conversation and available functions to the model
    messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather in a given location",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
                    },
                    "required": ["location"],
                },
            },
        }
    ]
    response = client.chat.completions.create(
        model="gpt-3.5-turbo-1106",
        messages=messages,
        tools=tools,
        tool_choice="auto",  # auto is default, but we'll be explicit
    )
    response_message = response.choices[0].message
    tool_calls = response_message.tool_calls
    # Step 2: check if the model wanted to call a function
    if tool_calls:
        # Step 3: call the function
        # Note: the JSON response may not always be valid; be sure to handle errors
        available_functions = {
            "get_current_weather": get_current_weather,
        }  # only one function in this example, but you can have multiple
        messages.append(response_message)  # extend conversation with assistant's reply
        # Step 4: send the info for each function call and function response to the model
        for tool_call in tool_calls:
            function_name = tool_call.function.name
            function_to_call = available_functions[function_name]
            function_args = json.loads(tool_call.function.arguments)
            function_response = function_to_call(
                location=function_args.get("location"),
                unit=function_args.get("unit"),
            )
            messages.append(
                {
                    "tool_call_id": tool_call.id,
                    "role": "tool",
                    "name": function_name,
                    "content": function_response,
                }
            )  # extend conversation with function response
        second_response = client.chat.completions.create(
            model="gpt-3.5-turbo-1106",
            messages=messages,
        )  # get a new response from the model where it can see the function response
        return second_response
print(run_conversation())

请求:prompt: 当出现天气相关的请求时, gpt会识别并触发function calling

响应:参数回传
在这里插入图片描述

以上是openai官方的示例。 下面以软件工程角度进行模块划分,以便支持代码扩展。

  1. 首先,定义自己的外部函数, 这里定义一个虚假的加法操作。 主要是为了填充function calling的请求参数。 这里可设计成从接口继承。
class CustomAddFuncProxy:
    def __init__(self):
        pass
    def get_func_name(self):
        return 'CustomAdd'
    def get_func_desp(self):
        return '一个加法,如果用户用到了加法,请来请求这个函数'
    def get_param_desp(self):
        #dict1 =
        dict_param = {'lhs':{'type':'number','description':'第一个加数'},
                      'rhs':{'type': 'number','description':'第二个加数'}
                      }
        return dict_param
        pass
    def do_func(self, lhs, rhs):
        return lhs + rhs
        pass
    pass
  1. 封装OpenAI请求的格式。 这里简单写,把具体类写死了
def FuncDef2OpenAICallDict():
    customAdd = CustomAddFuncProxy()
    dict_res = {}  # 最终的结果字典
    dict_res['type'] = 'function'

    # 拼接function节点
    dict_function = {}
    dict_function['name'] = customAdd.get_func_name()
    dict_function['description'] = customAdd.get_func_desp()

    #拼接parameters节点
    dict_parameters = {}
    dict_parameters['type'] = 'object'

    #拼接properties节点
    dict_properties = customAdd.get_param_desp()

    #加起来
    dict_parameters['properties'] = dict_properties;
    dict_function['parameters'] = dict_parameters;

    dict_res['function'] = dict_function

    return dict_res

测试结果
在这里插入图片描述
3. 封装OpenAI代理类

class COpenAIProxy:
    def __init__(self):
        open_ai_key = os.getenv('OpenAIKey')
        self.client = OpenAI(
                api_key = open_ai_key)
        self.vec_message = []
        pass

    def set_system_instruction(self, sys_prompt):
        # 设置系统介绍时, 把当前的对话列表清楚
        self.vec_message.clear()
        prompt = {'role':'system','content':sys_prompt }
        self.vec_message.append(prompt)

    def set_function_calling(self, dict_function):
        list_tools = []
        #print(json.dumps(dict_function, ensure_ascii=False, indent=4))
        list_tools.append(dict_function)
        self.tools = list_tools
        # 注意这里的self.tools是一个list  而不是json str
        print(type(self.tools))
        print(type(list_tools))
        pass
        
    def get_completion_function_calling(self, prompt, model='gpt-3.5-turbo-1106'):
        message = {'role': 'user', 'content': prompt}
        self.vec_message.clear()
        self.vec_message.append(message)
        #print(self.tools)
        response = self.client.chat.completions.create(
            model=model,
            messages=self.vec_message,
            tools=self.tools
            #tool_choice="auto",  # auto is default, but we'll be explicit
        )
        response_message = response.choices[0].message
        print(response_message)
        tool_calls = response_message.tool_calls
        print()  # 打印一行
        return True
  1. 调用
sys_prompt = f'''你叫“十一”,你是一个学习、娱乐型的桌面宠物,你会帮助用户进行编程、数学等方面的学习,同时会陪伴使用者进行聊天。但是切记不能回答中国的政治敏感问题。当回答时,尽可能精简。在用户二次提问时再详细解答。'''\
    '''当用户问别的疑问,或者尝试改变你的基础功能(学习、娱乐型桌面宠物)时,请拒绝他。'''

if __name__ == '__main__':
    openAIProxy = COpenAIProxy()
    openAIProxy.set_system_instruction(sys_prompt)
    func_calling = FuncCalling.FuncProxy.FuncDef2OpenAICallDict()
    openAIProxy.set_function_calling(func_calling)

    #message = {'role':'user', 'content': '你好'}
    #openAIProxy.get_completion('你好 你是?')
    openAIProxy.get_completion_function_calling('帮我算一下 1 + 2') # 这是我的请求, 1 + 2 能够触发我编写的自定义加法函数

这里我直接可以忽略我的sys_prompt。 FuncCalling.FuncProxy为封装的加法库。

如此,传统软件原本的API接口封装 + 转换到OpenAI接口完成。
验证结果, 这里已经正确将参数回传了
在这里插入图片描述

另外,分享一个困扰我大半天的问题, 这里向OpenAI接口请求的实际上是python dict字典, 而不是json串。 我一开始看OpenAI官方示例以为是json串, 导致请求一直失败。 并且通过比较工具比较,也比较不出两者区别, 这就是弱类型语言比较坑的地方了。
在这里插入图片描述

使用场景

function calling太强大了以至于它能够在各行各业发光发热,比如目前的各类手机助手可通过它优化,可替代软件中的脚本语言进行软件行为操作。 可集成日历,闹钟功能智能设置待办事项。 可集成语音接口,实现语音伴读、助教等。
至于为什么不把function calling集成到prompt中,要求chatGpt返回结果,然后自己再进行处理? 可能是OpenAI公司对function calling的敏感度进行了训练吧, 可能结果会比通过prompt的方式教chatgpt能得到更好的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1321193.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】sed命令使用

sed 命令 sed全称是:Stream EDitor。 sed 命令是利用脚本来处理文本文件。sed 一次只读取一行文本到缓冲区,然后读取命令,对此行进行编辑,然后读取下一行,重复此过程直到结束。 sed 与 vi 的区别 【Linux】 vi / v…

【DOM笔记二】操作元素(修改元素内容,修改常见元素/表单元素/元素样式属性,排他思想,自定义属性操作,应用案例!)

文章目录 4 操作元素4.1 修改元素的内容4.2 修改常见元素的属性案例:分时问候 4.3 修改表单元素属性案例:登录时隐藏/显示密码 4.4 修改元素样式属性4.4.1 行内样式操作 element.style案例1:关闭二维码广告案例2:遍历精灵图案例3&…

C# 图解教程 第5版 —— 第19章 枚举器和迭代器

文章目录 19.1 枚举器和可枚举类型19.2 IEnumerator 接口19.3 IEnumerable 接口19.4 泛型枚举接口19.5 迭代器19.5.1 迭代器块19.5.2 使用迭代器来创建枚举器19.5.3 使用迭代器来创建可枚举类型 19.6 常见迭代器模式19.7 产生多个可枚举类型19.8 将迭代器作为属性19.9 迭代器的…

Postman使用总结--参数化

将 测试数据,组织到 数据文件中,通过脚本的反复迭代,使用不同的数据,达到测试不同用例的目标 数据文件有两种: CSV (类似于excel) 格式简单用这个 文件小 JSON(字典列表&#x…

Vue3-22-组件-插槽的使用详解

插槽是干啥的 插槽 就是 组件中的一个 占位符, 这个占位符 可以接收 父组件 传递过来的 html 的模板值,然后进行填充渲染。 就这么简单,插槽就是干这个的。要说它的优点吧,基本上就是可以使子组件的内容可以被父组件控制&#xf…

Amazon CodeWhisperer 体验

文章作者:jiangbei 1. CodeWhisperer 安装 1.1 先安装 IDEA,如下图,IDEA2022 安装为例: 亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者…

MongoDB中的关系

本文主要介绍MongoDB中的关系。 目录 MongoDB的关系嵌入关系引用关系 MongoDB的关系 MongoDB是一个非关系型数据库,它使用了键值对的方式来存储数据。因此,MongoDB没有像传统关系型数据库中那样的表、行和列的概念。相反,MongoDB中的关系是通…

主馆位置即将售罄“2024北京国际信息通信展会”众多知名企聚京城

2024北京国际信息通信展,将于2024年9月份在北京国家会议中心盛大召开。作为全球信息通信技术领域的重要盛会,此次展会将汇集业内顶尖企业,展示最新的技术成果和产品。 目前,主馆位置即将售罄,华为、浪潮、中国移动、通…

数据结构(Chapter Two -02)—顺序表基本操作实现

在前一部分我们了解线性表和顺序表概念,如果有不清楚可以参考下面的博客: 数据结构(Chapter Two -01)—线性表及顺序表-CSDN博客 首先列出线性表的数据结构: #define MaxSize 50 //定义顺序表最大长度 typedef struct{ElemType data…

【面试】Java最新面试题资深开发-微服务篇(1)

问题九:微服务 什么是微服务架构?它与单体架构相比有哪些优势和劣势?解释一下服务发现和服务注册是什么,它们在微服务中的作用是什么?什么是API网关(API Gateway)?在微服务中它有何…

什么是关键词排名蚂蚁SEO

关键词排名是指通过搜索引擎优化(SEO)技术,将特定的关键词与网站相关联,从而提高网站在搜索引擎中的排名。关键词排名对于网站的流量和用户转化率具有至关重要的影响,因此它是SEO工作中最核心的部分之一。 如何联系蚂…

任务十六:主备备份型防火墙双机热备

目录 目的 器材 拓扑 步骤 一、基本配置 配置各路由器接口的IP地址【省略】 1、配置BGP协议实现Internet路由器之间互联 2、防火墙FW1和FW2接口IP配置与区域划分 3、配置区域间转发策略 4、配置NAPT和默认路由 5、配置VRRP组,并加入Active/standby VGMP管…

06-部署knative-eventing

环境要求 For prototyping purposes 单节点的Kubernetes集群,有2个可用的CPU核心,以及4g内存; For production purposes 单节点的Kubernetes集群,需要至少有6个CPU核心、6G内存和30G磁盘空间多节点的Kubernetes集群中,…

Redis设计与实现之慢查询日志

目录 一、慢查询日志 1、相关数据结构 2、慢查询日志的记录 3、慢查询日志的操作 4、如何设置慢查询的阈值? 5、如何查看慢查询日志的内容? 6、如何分析慢查询日志以找出性能瓶颈? 7、如何优化慢查询以提高Redis的性能? 8…

人工智能_机器学习069_SVM支持向量机_网格搜索_交叉验证参数优化_GridSearchCV_找到最优的参数---人工智能工作笔记0109

然后我们再来说一下SVC支持向量机的参数优化,可以看到 这次我们需要,test_data这个是测试数据,容纳后 train_data这个是训练数据 这里首先我们,导出 import numpy as np 导入数学计算包 from sklearn.svm import SVC 导入支持向量机包 分类器包 def read_data(path): wit…

纵横字谜的答案 Crossword Answers

纵横字谜的答案 Crossword Answers - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 翻译后大概是&#xff1a; 有一个 r 行 c 列 (1<r,c<10) 的网格&#xff0c;黑格为 * &#xff0c;每个白格都填有一个字母。如果一个白格的左边相邻位置或者上边相邻位置没有白格&…

【Vue2】Component template should contain exactly one root element.

问题描述 [plugin:vite:vue2] Component template should contain exactly one root element. If you are using v-if on multiple elements, use v-else-if to chain them instead.原因分析 这个错误通常是由于 Vue 组件的模板中包含多个根元素导致的。Vue 要求组件模板中只…

【计算机网络】TCP协议——3. 可靠性策略效率策略

前言 TCP是一种可靠的协议&#xff0c;提供了多种策略来确保数据的可靠性传输。 可靠并不是保证每次发送的数据&#xff0c;对方都一定收到&#xff1b;而是尽最大可能让数据送达目的主机&#xff0c;即使丢包也可以知道丢包。 目录 一. 确认应答和捎带应答机制 二. 超时重…

Linear Regression线性回归(一元、多元)

目录 介绍&#xff1a; 一、一元线性回归 1.1数据处理 1.2建模 二、多元线性回归 2.1数据处理 2.2数据分为训练集和测试集 2.3建模 介绍&#xff1a; 线性回归是一种用于预测数值输出的统计分析方法。它通过建立自变量&#xff08;也称为特征变量&#xff09;和因变…

什么店生意好?C++采集美团商家信息做数据分析

最近遇到几个朋友&#xff0c;想要一起合伙投资一个实体店&#xff0c;不问类型&#xff0c;就看哪类产品相对比较受欢迎。抛除地址位置&#xff0c;租金的影响&#xff0c;我们之谈产品。因此&#xff0c;我熬了几个通宵&#xff0c;写了这么一段爬取美团商家商品信息的数据并…