YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)

news2024/11/26 14:32:44

一、本文介绍

本文给大家带来的改进内容是SPD-Conv(空间深度转换卷积)技术。SPD-Conv是一种创新的空间编码技术,它通过更有效地处理图像数据来改善深度学习模型的表现。SPD-Conv的基本概念:它是一种将图像空间信息转换为深度信息的技术,从而使得卷积神经网络(CNN)能更加有效地学习图像特征。这种方法通过减少信息损失和提高特征提取的准确性,优化了模型对小物体和低分辨率图像的处理能力。我在YOLOv8中利用SPD-Conv被用于替换传统的步长卷积和池化层,在不牺牲精确度的情况下减少计算复杂度(精度甚至略有提升)。本文后面会有SPD-Conv的代码和使用方法,手把手教你添加到自己的网络结构中(值得一提的是该卷积模块可以做到轻量化模型的作用GFLOPs由8.9降低到8.2,参数量也有一定降低)

推荐指数:⭐⭐⭐⭐⭐

  专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

训练结果对比图->  

二、SPD-Conv构建块原理

论文地址:论文官方地址

代码地址:


2.1 SPD-Conv的基本原理

SPD-Conv(空间到深度卷积)的基本原理是用于改进传统卷积神经网络(CNN)中对小物体和低分辨率图像处理的性能。它主要通过以下几个关键步骤实现:

1. 替换步长卷积和池化层:SPD-Conv设计用来替代传统CNN架构中的步长卷积层和池化层。步长卷积和池化层在处理低分辨率图像或小物体时会导致细粒度信息的丢失。

2. 空间到深度(SPD)层:SPD层的作用是降采样特征图的通道维度,同时保留信息。这种方式可以避免传统方法中的信息丢失。

3. 非步长卷积层:在SPD层之后,SPD-Conv使用一个非步长(即步长为1)的卷积层。这有助于在降低通道数量的同时利用可学习的参数对特征进行处理。

以下是我对这个图的理解:

1. 特征图 (a):传统的特征图,具有通道数 C_{1}​,高度和宽度。
2. 空间到深度变换 (b):通过空间到深度操作,将像素的空间块重新排列到深度/通道维度,增加通道数到 4C_{1}​,同时将空间维度缩小2倍。
3. 通道合并 (c):不同的通道组在通道维度上进行合并。
4. 加法操作 (d):合并的特征图可能会与其他处理过的特征图(图中未详细展示)进行加法操作。
5. 非步长卷积 (e):对结果特征图应用步长为1的卷积,减少通道维度至C_{2}​,同时保持空间分辨率,其仍是原始大小的1/2。

2.1.1替换步长卷积和池化层

论文中提出的SPD-Conv构建块是为了替代传统CNN中的步长卷积和池化层。步长卷积和池化层在处理低分辨率图像和小物体时会导致信息的丢失。SPD-Conv使用空间到深度(SPD)层,该层将特征图的空间维度转换成深度维度,通过增加通道数来保留更多信息。随后是非步长卷积层,它保持了空间维度,减少了通道数。这种替代方法避免了信息的丢失,并允许网络捕获更精细的特征,从而提高了在复杂任务上的性能。

上图是SPD-Conv论文中的一个图表,展示了如何在YOLOv5的结构中实施SPD-Conv(在YOLOv8中同样适用)。图中标红的部分代表了SPD-Conv替换传统卷积操作的地方。YOLOv5的架构被分为三个主要部分:

1. 主干网络(Backbone):这是特征提取的核心部分,每个SPD和Conv层的组合都替换了原始YOLOv5中的步长卷积层。
2. 颈部(Neck):这部分用于进一步处理特征图,以获得不同尺度的特征,从而提高检测不同大小物体的能力。它也包含SPD和Conv层的组合,以优化特征提取。
3. 头部(Head):这是决策部分,用于物体检测任务,包括定位和分类。头部保持了YOLO原始架构的设计。

直连线表示直接的前向连接,虚线代表跳跃连接,用于整合不同层次的特征。


2.1.2 空间到深度(SPD)层

空间到深度(SPD)层是SPD-Conv中的一个关键组件,其作用是将输入特征图的空间块(像素块)重新排列进入深度(通道)维度,以此来增加通道数,同时减少空间分辨率,但不丢失信息。通过这种方式,这一转换允许CNN捕捉和保留在处理小物体和低分辨率图像时经常丢失的精细信息。SPD层后面紧跟的是非步长卷积层,它进一步处理重新排列后的特征图,确保有效特征的提取和使用​​。通过这种方法,SPD-Conv能够在特征提取阶段保留更丰富的信息,从而提高模型对于小物体和低分辨率图像的识别性能。


2.1.3 非步长卷积层

在SPD-Conv的背景下,非步长卷积层采用的是步长为1的卷积操作,意味着在卷积过程中,滤波器(或称为卷积核)会在输入特征图上逐像素移动,没有跳过任何像素。这样可以确保在特征图的每个位置都能应用卷积核,最大程度地保留信息,并生成丰富的特征表示。非步长卷积层是紧随空间到深度(SPD)层的一个重要组成部分。在SPD层将输入特征图的空间信息重新映射到深度(通道)维度后,非步长卷积层(即步长为1的卷积层)被用来处理这些重新排列的特征图。由于步长为1,这个卷积层不会导致任何进一步的空间分辨率降低,这允许网络在不损失细节的情况下减少特征图的通道数。这种方法有助于改善特征的表征,特别是在处理小物体或低分辨率图像时,这些场景在传统CNN结构中往往会丢失重要信息。


2.2 检测效果

上图比较了标准YOLOv5m模型和集成了SPD-Conv的改进版本YOLOv5-SPD-m的性能。紫色框表示标准YOLOv5m的预测,绿色框显示了YOLOv5-SPD-m的预测。蓝色框代表地面真相(ground truth)。红色箭头突出了两个模型预测之间的差异。

从图像中我们可以看出,YOLOv5-SPD-m(绿色框)的预测与地面真相更为接近,与YOLOv5m(紫色框)的预测相比,这表明将SPD-Conv整合进YOLOv5能增强模型准确检测物体的能力,这对于需要精确定位和识别的应用来说至关重要,例如自动驾驶或监控。

三、SPD-Conv完整代码

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。

class SPDConv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        c1 = c1 * 4
        self.conv = nn.Conv2d(c1 , c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        return self.act(self.conv(x))

四、手把手教你添加SPD-Conv

4.1 细节修改教程

4.1.1 修改一

我们找到如下的目录'yolov5-master/models'在这个目录下创建一个文件目录(注意是目录,因为我这个专栏会出很多的更新,这里用一种一劳永逸的方法)文件目录起名modules,然后在下面新建一个文件,将我们的代码复制粘贴进去。


​4.1.2 修改二

然后新建一个__init__.py文件,然后我们在里面添加一行代码。注意标记一个'.'其作用是标记当前目录。


4.1.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加。)

​​​​


4.1.4 修改四

然后我们找到parse_model方法,按照如下修改->

到此就修改完成了,复制下面的ymal文件即可运行。


4.2 SPD-Conv的yaml文件(仔细看这个否则会报错)

4.2.1 SPD-Conv的yaml文件一

下面的配置文件为我修改的SPD-Conv的位置(这里需要注意的是你可以和初始的yaml对比一下修改了SPD-Conv的参数被修改了,你如果不修改该卷积那么则不需要修改另外两个参数),同时该卷积只能替换卷积核为3和步长为2的卷积。

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, SPDConv, [128]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, SPDConv, [256]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, SPDConv, [512]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, SPDConv, [1024]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, SPDConv, [256]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, SPDConv, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


4.2.2 SPD-Conv的yaml文件二

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, SPDConv, [128]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, SPDConv, [256]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, SPDConv, [512]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, SPDConv, [1024]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

4.3 SPD-Conv运行成功截图

附上我的运行记录确保我的教程是可用的。 


五、本文总结 

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv5改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1319282.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java_Lambda表达式JDK8新特性(方法引用)

一、Lambda表达式 接下来,我们学习一个JDK8新增的一种语法形式,叫做Lambda表达式。作用:用于简化匿名内部类代码的书写。 1.1 Lambda表达式基本使用 怎么去简化呢?Lamdba是有特有的格式的,按照下面的格式来编写Lamd…

如何用Python向图像中加入噪声

我们在做机器视觉项目的过程中,有的时候需要向图像中加入噪声。Pytorch本身不支持类似的功能,如果自己写的话,不但麻烦,而且容易出错。好在skimage支持这个功能。代码如下: import skimage import matplotlib.pyplot …

Web安全漏洞分析—文件包含

在当今数字化时代,随着Web应用程序的广泛应用,网络安全问题愈加凸显。其中,文件包含漏洞作为一种常见但危险的安全隐患,为恶意攻击者提供了可乘之机。在这篇博客中,我们将深入探讨文件包含漏洞的本质、攻击手法以及应对…

信息收集 - 域名

1、Whois查询: Whois 是一个用来查询域名是否已经被注册以及相关详细信息的数据库(如:域名所有人、域名注册商、域名注册日期和过期日期等)。通过访问 Whois 服务器,你可以查询域名的归属者联系方式和注册时间。 你可以在 域名Whois查询 - 站长之家 上进行在线查询。 2、…

python提取图片型pdf中的文字(提取pdf扫描件文字)

前言 文字型pdf提取,python的库一大堆,但是图片型pdf和pdf扫描件提取,还是有些难度的,我们需要用到OCR(光学字符识别)功能。 一、准备 1、安装OCR(光学字符识别)支持库 首先要安…

详解git pull和git fetch的区别

git pull和git fetch的区别, 网上人云亦云胡说八道的实在是太多了,误导我很久。 今天看到一个说得好的,记录一下。 前言 在我们使用git的时候用的更新代码是git fetch,git pull这两条指令。但是有没有小伙伴去思考过这两者的区别呢&#xff…

vue3引入Echarts图表

说明:echarts是父组件,stack是子组件,将stack引入到echarts文件中 查看echarts.vue时可看到stack.vue中的图表 # # # 引入方式 第一步 Echarts官网:快速上手 - 使用手册 - Apache ECharts 第二步 在控制台安装Echarts模块…

8.完成任务实现的SDK封装及插件式加载

1.设计 任务的实现目前完成了Modbus RTU、Modbus TCP、Virtule。任务实现应该是任意的,比如打印一段话,执行一句SQL等,所以系统内部的必然要做到可扩展。 要做到可扩展,首先第一步就是定义标准,所以我们首先需要封装…

nodejs+vue+微信小程序+python+PHP基于大数据的银行信用卡用户的数仓系统的设计与实现-计算机毕业设计推荐

银行信用卡用户的数仓系统综合网络空间开发设计要求。目的是将银行信用卡用户的数仓系统从传统管理方式转换为在网上管理,完成银行信用卡用户的数仓管理的方便快捷、安全性高、交易规范做了保障,目标明确。银行信用卡用户的数仓系统可以将功能划分为管理…

从文字下乡到人人学英语

从建国到改革开放,从恢复高考到新式教育改革,中国飞速发展,文字需求也在不断增大,在“地球村”的时代下,我们要“习文字之变,顺时代发展。” 古言道:“仓颉作书,后稷作稼”&#xff…

【Spark面试】Spark面试题答案

目录 1、spark的有几种部署模式,每种模式特点?(☆☆☆☆☆) 2、Spark为什么比MapReduce块?(☆☆☆☆☆) 3、简单说一下hadoop和spark的shuffle相同和差异?(☆☆☆☆☆…

Linux学习教程(第十三章 Linux数据备份与恢复)

第十三章 Linux数据备份与恢复 不知道大家有没有丢失过重要的数据呢? 丢失数据的理由是多种多样的,有人是因为重装系统时,没有把加密文件的密钥导出,重装系统后密钥丢失,导致所有的加密数据不能解密;也有人…

实验记录:深度学习模型收敛速度慢有哪些原因

深度学习模型收敛速度慢有哪些原因? 学习率设置不当: 学习率是算法中一个重要的超参数,它控制模型参数在每次迭代中的更新幅度。如果学习率过大,可能会导致模型在训练过程中的振荡,进而影响到收敛速度;如果…

字符设备驱动框架的编写

一. 简介 我们在学习裸机或者 STM32 的时候关于驱动的开发就是初始化相应的外设寄存器,在 Linux 驱动开发中,肯定也是要初始化相应的外设寄存器。 只是在 Linux 驱动开发中, 我们需要按照其规定的框架来编写驱动,所以说学 …

【网络安全】网络防护之旅 - Java安全机制探秘与数字证书引爆网络防线

🌈个人主页:Sarapines Programmer🔥 系列专栏:《网络安全之道 | 数字征程》⏰墨香寄清辞:千里传信如电光,密码奥妙似仙方。 挑战黑暗剑拔弩张,网络战场誓守长。 目录 😈1. 初识网络安…

机场信息集成系统系列介绍(3):机场运行核心数据库(AODB)

目录 1、背景:什么是AODB 2、AODB包括哪些内容 3、AODB还应该适配哪些场景 4、一点点拓展 机场运行核心数据库(AODB)Airport Operation DataBase 1、背景:什么是AODB 在机场繁重的航班保障和旅客服务背后,庞大的…

centos安装了curl却报 -bash: curl: command not found

前因 我服务器上想用curl下载docker-compress,发现没有curl命令,就去下载安装,安装完成之后,报-bash: curl: command not found 解决方法 [rootcentos ~]# rpm -e --nodeps curl warning: file /usr/bin/curl: remove failed: …

非常好用的C++跨平台网络通信Mongoose,随笔记录

简介 Mongoose 是一个 C/C 网络库。它实现了事件驱动, TCP、UDP、HTTP、WebSocket、MQTT 的非阻塞 API。它连接设备 并将它们带到网上。自 2004 年以来,一些开源和商业 产品已经利用了它。它甚至运行在 国际空间站! Mongoose 使嵌入式网络编…

【数据结构】(堆)Top-k|堆排序

目录 概念: 堆的实现 构建 初始化 销毁 插入元素 往上调整 删除堆顶元素 往下调整 返回堆顶元素 返回有效个数 是否为空 堆排序 Top-k问题 ​编辑 创建数据 堆top-k 概念: 堆是将数据按照完全二叉树存储方式存储到一维数组中&#xff…

Python实验项目9 :网络爬虫与自动化

实验 1:爬取网页中的数据。 要求:使用 urllib 库和 requests 库分别爬取 http://www.sohu.com 首页的前 360 个字节的数据。 # 要求:使用 urllib 库和 requests 库分别爬取 http://www.sohu.com 首页的前 360 个字节的数据。 import urllib.r…