雪花算法(几种常见的雪花算法生成ID方案简单介绍:Hutool、百度Uid-Generator、美团Leaf、Yitter)

news2024/11/28 18:38:12

文章目录

  • 1.生成id的几种方式
  • 2. 雪花算法
    • 2.1 雪花算法介绍
    • 2.2 市面上几种雪花算法的实现
      • 2.2.1 hutool版
      • 2.2.1.1 hutool版本雪花算法 关于时钟回拨的处理:
    • ---------------百度UidGenerator 介绍开始--------------
      • 2.2.2 百度版:[UidGenerator](https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md)
    • Snowflake算法
    • CachedUidGenerator
        • RingBuffer填充时机
    • Quick Start
      • 步骤1: 安装依赖
        • 设置环境变量
      • 步骤2: 创建表WORKER_NODE
      • 步骤3: 修改Spring配置
        • DefaultUidGenerator配置
        • CachedUidGenerator配置
        • Mybatis配置
      • 步骤4: 运行示例单测
      • 关于UID比特分配的建议
        • 吞吐量测试
    • ---------------百度UidGenerator 介绍结束--------------
    • ---------------美团Leaf 介绍开始--------------
      • 2.2.3 美团版:[Leaf](https://tech.meituan.com/2019/03/07/open-source-project-leaf.html)
    • Introduction
    • Quick Start
      • 使用starter注解启动leaf
      • Leaf Server
        • 配置介绍
        • 号段模式
          • 创建数据表
          • 配置相关数据项
        • Snowflake模式
          • 配置zookeeper地址
        • 运行Leaf Server
          • 打包服务
          • 运行服务
            • mvn方式
            • 脚本方式
          • 测试
          • 监控页面
      • Leaf Core
      • 注意事项
    • ---------------美团Leaf 介绍结束--------------
      • 2.2.4 Twitter版:twitter-archive/snowflake(github仓库已经不对外开放)
    • ---------------yitter SnowFlake IdGenerator 介绍开始--------------
      • 2.2.5 [yitter / 多语言新雪花算法(SnowFlake IdGenerator)](https://gitee.com/yitter/idgenerator/blob/master/Java/README.md),没上面几个出名,但也是码云上较火的一个snowflake项目
  • ❄ idgenerator-Java
    • 运行环境
    • 引用 maven 包
    • 调用示例(Java)
    • ---------------yitter SnowFlake IdGenerator 介绍结束--------------

1.生成id的几种方式

    1. UUID (无序,基本可以认为不会重复,有根据mac地址生成(这种会暴露隐私)、时间、或者名称生成)
    1. 数据库自增主键(分表的情况下会有问题,无法保证唯一性)
    1. redis的INCR和INCEBY(实际项目中没见过这样做的)
    1. 雪花算法生成id(有序,不需要依赖中间件,但是因为有序可能会暴露隐私,导致安全问题;依赖时间戳,若时间快了重新校准,有时钟回拨问题)

2. 雪花算法

2.1 雪花算法介绍

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

  • 1:最高 1 位是符号位,固定值 0,表示id 是正整数
  • 41:接下来 41 位存储毫秒级时间戳,2^41/(1000606024365)=69,大概可以使用 69 年。
  • 10:再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。
  • 12:最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。
对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。

在这里插入图片描述

2.2 市面上几种雪花算法的实现

    1. hutool版
    1. 百度UidGenerator
    1. 美团Leaf
    1. twitter-archive/snowflake(github仓库已经不对外开放)
    1. yitter / 多语言新雪花算法(SnowFlake IdGenerator),没上面几个出名,是码云上较火的一个snowflake项目

2.2.1 hutool版

<dependency>
    <groupId>cn.hutool</groupId>
    <artifactId>hutool-all</artifactId>
    <version>5.5.1</version>
</dependency>
Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);
long id = snowflake.nextId();

2.2.1.1 hutool版本雪花算法 关于时钟回拨的处理:

如果时钟回拨不超过2秒,则会将现在的时间点置为上个产生id的时间点(超过2s就抛出异常了);
如果上个时间点产生的id没有达到4095(超过4095就抛出异常了),即使产生了时钟回拨,也可以继续生成id。
如果出现时钟回拨,假设是5s,那么如果这5s内没有id需要生成,那么时钟回拨没有任何影响。
时钟回拨相当于我们手机的时间校准。

 public synchronized long nextId() {
      long timestamp = this.genTime();
      
	  // 这里就是判断有没有时钟回拨现象
	  // lastTimestamp就是上次生成id的时间戳,timestamp就是现在的时间戳,
	  // 如果现在的时间戳小于上次的时间戳,就说明发生了时钟回拨
      if (timestamp < this.lastTimestamp) {
	
	       // 如果时钟回拨超过两秒钟,就会抛出异常
          if (this.lastTimestamp - timestamp >= 2000L) {
              throw new IllegalStateException(StrUtil.format("Clock moved backwards. Refusing to generate id for {}ms", new Object[]{this.lastTimestamp - timestamp}));
          }
	
	      // 出现时钟回拨现象,将现在的时间定义为之前的时间
          timestamp = this.lastTimestamp;
      }

      if (timestamp == this.lastTimestamp) {
      	  // 这里当sequence等于4095,运算结果等于0,也就代表上个时间点产生的id已经达到了最大数-1,
      	  // 也就可以认为是不能再用这个时间戳产生id了
          long sequence = this.sequence + 1L & 4095L;
          if (sequence == 0L) {
          	  // 这里的tilNextMillis()方法里,若出现时钟回拨会报错
              timestamp = this.tilNextMillis(this.lastTimestamp);
          }
	      // 如果上个时间点产生的id没有达到4095,时钟回拨不超过2秒,则即时产生了时间回拨,也可以继续生成id
          this.sequence = sequence;
      } else {
          this.sequence = 0L;
      }

      this.lastTimestamp = timestamp;
      // 执行顺序:((timestamp - this.twepoch) << 22) | (this.dataCenterId << 17) | (this.workerId << 12) | this.sequence;
      return timestamp - this.twepoch << 22 | this.dataCenterId << 17 | this.workerId << 12 | this.sequence;
     
 }

---------------百度UidGenerator 介绍开始--------------

2.2.2 百度版:UidGenerator

UidGenerator是Java实现的, 基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中,
支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。
在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费,
同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万

依赖版本:Java8及以上版本,
MySQL(内置WorkerID分配器, 启动阶段通过DB进行分配; 如自定义实现, 则DB非必选依赖)

Snowflake算法

在这里插入图片描述

Snowflake算法描述:指定机器 & 同一时刻 & 某一并发序列,是唯一的。据此可生成一个64 bits的唯一ID(long)。默认采用上图字节分配方式:

  • sign(1bit)
    固定1bit符号标识,即生成的UID为正数。

  • delta seconds (28 bits)
    当前时间,相对于时间基点"2016-05-20"的增量值,单位:秒,最多可支持约8.7年

  • worker id (22 bits)
    机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。

  • sequence (13 bits)
    每秒下的并发序列,13 bits可支持每秒8192个并发。

以上参数均可通过Spring进行自定义

CachedUidGenerator

RingBuffer环形数组,数组每个元素成为一个slot。RingBuffer容量,默认为Snowflake算法中sequence最大值,且为2^N。可通过boostPower配置进行扩容,以提高RingBuffer
读写吞吐量。

Tail指针、Cursor指针用于环形数组上读写slot:

  • Tail指针
    表示Producer生产的最大序号(此序号从0开始,持续递增)。Tail不能超过Cursor,即生产者不能覆盖未消费的slot。当Tail已赶上curosr,此时可通过rejectedPutBufferHandler指定PutRejectPolicy

  • Cursor指针
    表示Consumer消费到的最小序号(序号序列与Producer序列相同)。Cursor不能超过Tail,即不能消费未生产的slot。当Cursor已赶上tail,此时可通过rejectedTakeBufferHandler指定TakeRejectPolicy

在这里插入图片描述

CachedUidGenerator采用了双RingBuffer,Uid-RingBuffer用于存储Uid、Flag-RingBuffer用于存储Uid状态(是否可填充、是否可消费)

由于数组元素在内存中是连续分配的,可最大程度利用CPU cache以提升性能。但同时会带来「伪共享」FalseSharing问题,为此在Tail、Cursor指针、Flag-RingBuffer中采用了CacheLine
补齐方式。

在这里插入图片描述

RingBuffer填充时机
  • 初始化预填充
    RingBuffer初始化时,预先填充满整个RingBuffer.

  • 即时填充
    Take消费时,即时检查剩余可用slot量(tail- cursor),如小于设定阈值,则补全空闲slots。阈值可通过paddingFactor来进行配置,请参考Quick Start中CachedUidGenerator配置

  • 周期填充
    通过Schedule线程,定时补全空闲slots。可通过scheduleInterval配置,以应用定时填充功能,并指定Schedule时间间隔

Quick Start

这里介绍如何在基于Spring的项目中使用UidGenerator, 具体流程如下(现在应该都是springboot项目,大家自己适配即可,官网还是spring的安装介绍):

步骤1: 安装依赖

先下载Java8, MySQL和Maven

设置环境变量

maven无须安装, 设置好MAVEN_HOME即可. 可像下述脚本这样设置JAVA_HOME和MAVEN_HOME, 如已设置请忽略.

export MAVEN_HOME=/xxx/xxx/software/maven/apache-maven-3.3.9
export PATH=$MAVEN_HOME/bin:$PATH
JAVA_HOME="/Library/Java/JavaVirtualMachines/jdk1.8.0_91.jdk/Contents/Home";
export JAVA_HOME;

步骤2: 创建表WORKER_NODE

运行sql脚本以导入表WORKER_NODE, 脚本如下:

DROP DATABASE IF EXISTS `xxxx`;
CREATE DATABASE `xxxx` ;
use `xxxx`;
DROP TABLE IF EXISTS WORKER_NODE;
CREATE TABLE WORKER_NODE
(
ID BIGINT NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
HOST_NAME VARCHAR(64) NOT NULL COMMENT 'host name',
PORT VARCHAR(64) NOT NULL COMMENT 'port',
TYPE INT NOT NULL COMMENT 'node type: ACTUAL or CONTAINER',
LAUNCH_DATE DATE NOT NULL COMMENT 'launch date',
MODIFIED TIMESTAMP NOT NULL COMMENT 'modified time',
CREATED TIMESTAMP NOT NULL COMMENT 'created time',
PRIMARY KEY(ID)
)
 COMMENT='DB WorkerID Assigner for UID Generator',ENGINE = INNODB;

修改mysql.properties配置中, jdbc.url, jdbc.username和jdbc.password, 确保库地址, 名称, 端口号, 用户名和密码正确.

步骤3: 修改Spring配置

提供了两种生成器: DefaultUidGenerator、CachedUidGenerator。如对UID生成性能有要求, 请使用CachedUidGenerator

对应Spring配置分别为: default-uid-spring.xml、cached-uid-spring.xml

DefaultUidGenerator配置
<!-- DefaultUidGenerator -->
<bean id="defaultUidGenerator" class="com.xin.demo.baidu.fsg.uid.impl.DefaultUidGenerator" lazy-init="false">
  <property name="workerIdAssigner" ref="disposableWorkerIdAssigner"/>

  <!-- Specified bits & epoch as your demand. No specified the default value will be used -->
  <property name="timeBits" value="29"/>
  <property name="workerBits" value="21"/>
  <property name="seqBits" value="13"/>
  <property name="epochStr" value="2016-09-20"/>
</bean>

        <!-- 用完即弃的WorkerIdAssigner,依赖DB操作 -->
<bean id="disposableWorkerIdAssigner" class="com.xin.demo.baidu.fsg.uid.worker.DisposableWorkerIdAssigner"/>

CachedUidGenerator配置
<!-- CachedUidGenerator -->
<bean id="cachedUidGenerator" class="com.xin.demo.baidu.fsg.uid.impl.CachedUidGenerator">
  <property name="workerIdAssigner" ref="disposableWorkerIdAssigner"/>

  <!-- 以下为可选配置, 如未指定将采用默认值 -->
  <!-- Specified bits & epoch as your demand. No specified the default value will be used -->
  <property name="timeBits" value="29"/>
  <property name="workerBits" value="21"/>
  <property name="seqBits" value="13"/>
  <property name="epochStr" value="2016-09-20"/>

  <!-- RingBuffer size扩容参数, 可提高UID生成的吞吐量. -->
  <!-- 默认:3, 原bufferSize=8192, 扩容后bufferSize= 8192 << 3 = 65536 -->
  <property name="boostPower" value="3"></property>

  <!-- 指定何时向RingBuffer中填充UID, 取值为百分比(0, 100), 默认为50 -->
  <!-- 举例: bufferSize=1024, paddingFactor=50 -> threshold=1024 * 50 / 100 = 512. -->
  <!-- 当环上可用UID数量 < 512时, 将自动对RingBuffer进行填充补全 -->
  <property name="paddingFactor" value="50"></property>

  <!-- 另外一种RingBuffer填充时机, 在Schedule线程中, 周期性检查填充 -->
  <!-- 默认:不配置此项, 即不实用Schedule线程. 如需使用, 请指定Schedule线程时间间隔, 单位:秒 -->
  <property name="scheduleInterval" value="60"></property>

  <!-- 拒绝策略: 当环已满, 无法继续填充时 -->
  <!-- 默认无需指定, 将丢弃Put操作, 仅日志记录. 如有特殊需求, 请实现RejectedPutBufferHandler接口(支持Lambda表达式) -->
  <property name="rejectedPutBufferHandler" ref="XxxxYourPutRejectPolicy"></property>

  <!-- 拒绝策略: 当环已空, 无法继续获取时 -->
  <!-- 默认无需指定, 将记录日志, 并抛出UidGenerateException异常. 如有特殊需求, 请实现RejectedTakeBufferHandler接口(支持Lambda表达式) -->
  <property name="rejectedTakeBufferHandler" ref="XxxxYourTakeRejectPolicy"></property>

</bean>

        <!-- 用完即弃的WorkerIdAssigner, 依赖DB操作 -->
<bean id="disposableWorkerIdAssigner" class="com.xin.demo.baidu.fsg.uid.worker.DisposableWorkerIdAssigner"/>

Mybatis配置

mybatis-spring.xml配置说明如下:

<!-- Spring annotation扫描 -->
<context:component-scan base-package="com.baidu.fsg.uid" />

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
    <property name="dataSource" ref="dataSource" />
    <property name="mapperLocations" value="classpath:/META-INF/mybatis/mapper/M_WORKER*.xml" />
</bean>

<!-- 事务相关配置 -->
<tx:annotation-driven transaction-manager="transactionManager" order="1" />

<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
	<property name="dataSource" ref="dataSource" />
</bean>

<!-- Mybatis Mapper扫描 -->
<bean class="org.mybatis.spring.mapper.MapperScannerConfigurer">
	<property name="annotationClass" value="org.springframework.stereotype.Repository" />
	<property name="basePackage" value="com.baidu.fsg.uid.worker.dao" />
	<property name="sqlSessionFactoryBeanName" value="sqlSessionFactory" />
</bean>

<!-- 数据源配置 -->
<bean id="dataSource" parent="abstractDataSource">
	<property name="driverClassName" value="${mysql.driver}" />
	<property name="maxActive" value="${jdbc.maxActive}" />
	<property name="url" value="${jdbc.url}" />
	<property name="username" value="${jdbc.username}" />
	<property name="password" value="${jdbc.password}" />
</bean>

<bean id="abstractDataSource" class="com.alibaba.druid.pool.DruidDataSource" destroy-method="close">
	<property name="filters" value="${datasource.filters}" />
	<property name="defaultAutoCommit" value="${datasource.defaultAutoCommit}" />
	<property name="initialSize" value="${datasource.initialSize}" />
	<property name="minIdle" value="${datasource.minIdle}" />
	<property name="maxWait" value="${datasource.maxWait}" />
	<property name="testWhileIdle" value="${datasource.testWhileIdle}" />
	<property name="testOnBorrow" value="${datasource.testOnBorrow}" />
	<property name="testOnReturn" value="${datasource.testOnReturn}" />
	<property name="validationQuery" value="${datasource.validationQuery}" />
	<property name="timeBetweenEvictionRunsMillis" value="${datasource.timeBetweenEvictionRunsMillis}" />
	<property name="minEvictableIdleTimeMillis" value="${datasource.minEvictableIdleTimeMillis}" />
	<property name="logAbandoned" value="${datasource.logAbandoned}" />
	<property name="removeAbandoned" value="${datasource.removeAbandoned}" />
	<property name="removeAbandonedTimeout" value="${datasource.removeAbandonedTimeout}" />
</bean>

<bean id="batchSqlSession" class="org.mybatis.spring.SqlSessionTemplate">
	<constructor-arg index="0" ref="sqlSessionFactory" />
	<constructor-arg index="1" value="BATCH" />
</bean>

步骤4: 运行示例单测

运行单测CachedUidGeneratorTest, 展示UID生成、解析等功能

@Resource
private UidGenerator uidGenerator;

@Test
public void testSerialGenerate() {
    // Generate UID
    long uid = uidGenerator.getUID();

    // Parse UID into [Timestamp, WorkerId, Sequence]
    // {"UID":"180363646902239241","parsed":{    "timestamp":"2017-01-19 12:15:46",    "workerId":"4",    "sequence":"9"        }}
    System.out.println(uidGenerator.parseUID(uid));

}

关于UID比特分配的建议

对于并发数要求不高、期望长期使用的应用, 可增加timeBits位数, 减少seqBits位数. 例如节点采取用完即弃的WorkerIdAssigner策略, 重启频率为12次/天,
那么配置成{"workerBits":23,"timeBits":31,"seqBits":9}时, 可支持28个节点以整体并发量14400 UID/s的速度持续运行68年.

对于节点重启频率频繁、期望长期使用的应用, 可增加workerBitstimeBits位数, 减少seqBits位数. 例如节点采取用完即弃的WorkerIdAssigner策略, 重启频率为24*12次/天,
那么配置成{"workerBits":27,"timeBits":30,"seqBits":6}时, 可支持37个节点以整体并发量2400 UID/s的速度持续运行34年.

吞吐量测试

在MacBook Pro(2.7GHz Intel Core i5, 8G DDR3)上进行了CachedUidGenerator(单实例)的UID吞吐量测试.

首先固定住workerBits为任选一个值(如20), 分别统计timeBits变化时(如从25至32, 总时长分别对应1年和136年)的吞吐量, 如下表所示:

timeBits2526272829303132
throughput6,831,4657,007,2796,679,6256,499,2056,534,9717,617,4406,186,9306,364,997

在这里插入图片描述

再固定住timeBits为任选一个值(如31), 分别统计workerBits变化时(如从20至29, 总重启次数分别对应1百万和500百万)的吞吐量, 如下表所示:

workerBits20212223242526272829
throughput6,186,9306,642,7276,581,6616,462,7266,774,6096,414,9066,806,2666,223,6176,438,0556,435,549

在这里插入图片描述

由此可见, 不管如何配置, CachedUidGenerator总能提供600万/s的稳定吞吐量, 只是使用年限会有所减少. 这真的是太棒了.

最后, 固定住workerBits和timeBits位数(如23和31), 分别统计不同数目(如1至8,本机CPU核数为4)的UID使用者情况下的吞吐量,

workerBits12345678
throughput6,462,7266,542,2596,077,7176,377,9587,002,4106,599,1137,360,9346,490,969

在这里插入图片描述

---------------百度UidGenerator 介绍结束--------------

---------------美团Leaf 介绍开始--------------

2.2.3 美团版:Leaf

There are no two identical leaves in the world.

世界上没有两片完全相同的树叶。

​ — 莱布尼茨

Introduction

Leaf 最早期需求是各个业务线的订单ID生成需求。在美团早期,有的业务直接通过DB自增的方式生成ID,有的业务通过redis缓存来生成ID,也有的业务直接用UUID这种方式来生成ID。以上的方式各自有各自的问题,因此我们决定实现一套分布式ID生成服务来满足需求。具体Leaf 设计文档见: leaf 美团分布式ID生成服务

目前Leaf覆盖了美团点评公司内部金融、餐饮、外卖、酒店旅游、猫眼电影等众多业务线。在4C8G VM基础上,通过公司RPC方式调用,QPS压测结果近5w/s,TP999 1ms。

Quick Start

使用starter注解启动leaf

https://github.com/Meituan-Dianping/Leaf/blob/feature/spring-boot-starter/README_CN.md

Leaf Server

我们提供了一个基于spring boot的HTTP服务来获取ID

配置介绍

Leaf 提供两种生成的ID的方式(号段模式和snowflake模式),你可以同时开启两种方式,也可以指定开启某种方式(默认两种方式为关闭状态)。

Leaf Server的配置都在leaf-server/src/main/resources/leaf.properties中

配置项含义默认值
leaf.nameleaf 服务名
leaf.segment.enable是否开启号段模式false
leaf.jdbc.urlmysql 库地址
leaf.jdbc.usernamemysql 用户名
leaf.jdbc.passwordmysql 密码
leaf.snowflake.enable是否开启snowflake模式false
leaf.snowflake.zk.addresssnowflake模式下的zk地址
leaf.snowflake.portsnowflake模式下的服务注册端口
号段模式

如果使用号段模式,需要建立DB表,并配置leaf.jdbc.url, leaf.jdbc.username, leaf.jdbc.password

如果不想使用该模式配置leaf.segment.enable=false即可。

创建数据表
CREATE DATABASE leaf
CREATE TABLE `leaf_alloc` (
  `biz_tag` varchar(128)  NOT NULL DEFAULT '',
  `max_id` bigint(20) NOT NULL DEFAULT '1',
  `step` int(11) NOT NULL,
  `description` varchar(256)  DEFAULT NULL,
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

insert into leaf_alloc(biz_tag, max_id, step, description) values('leaf-segment-test', 1, 2000, 'Test leaf Segment Mode Get Id')
配置相关数据项

在leaf.properties中配置leaf.jdbc.url, leaf.jdbc.username, leaf.jdbc.password参数

Snowflake模式

算法取自twitter开源的snowflake算法。

如果不想使用该模式配置leaf.snowflake.enable=false即可。

配置zookeeper地址

在leaf.properties中配置leaf.snowflake.zk.address,配置leaf 服务监听的端口leaf.snowflake.port。

运行Leaf Server
打包服务
git clone git@github.com:Meituan-Dianping/Leaf.git
//按照上面的号段模式在工程里面配置好
cd leaf
mvn clean install -DskipTests
cd leaf-server
运行服务

注意:首先得先配置好数据库表或者zk地址

mvn方式
mvn spring-boot:run
脚本方式
sh deploy/run.sh
测试
#segment
curl http://localhost:8080/api/segment/get/leaf-segment-test
#snowflake
curl http://localhost:8080/api/snowflake/get/test
监控页面

号段模式:http://localhost:8080/cache

Leaf Core

当然,为了追求更高的性能,需要通过RPC Server来部署Leaf 服务,那仅需要引入leaf-core的包,把生成ID的API封装到指定的RPC框架中即可。

注意事项

注意现在leaf使用snowflake模式的情况下 其获取ip的逻辑直接取首个网卡ip【特别对于会更换ip的服务要注意】避免浪费workId

---------------美团Leaf 介绍结束--------------

2.2.4 Twitter版:twitter-archive/snowflake(github仓库已经不对外开放)

---------------yitter SnowFlake IdGenerator 介绍开始--------------

2.2.5 yitter / 多语言新雪花算法(SnowFlake IdGenerator),没上面几个出名,但也是码云上较火的一个snowflake项目

❄ idgenerator-Java

运行环境

JDK 1.8+

引用 maven 包

<dependency>
	<groupId>com.github.yitter</groupId>
	<artifactId>yitter-idgenerator</artifactId>
	<version>1.0.6</version>
</dependency>

调用示例(Java)

第1步,全局 初始化(应用程序启动时执行一次):

// 创建 IdGeneratorOptions 对象,可在构造函数中输入 WorkerId:
IdGeneratorOptions options = new IdGeneratorOptions(Your_Unique_Worker_Id);
// options.WorkerIdBitLength = 10; // 默认值6,限定 WorkerId 最大值为2^6-1,即默认最多支持64个节点。
// options.SeqBitLength = 6; // 默认值6,限制每毫秒生成的ID个数。若生成速度超过5万个/秒,建议加大 SeqBitLength 到 10。
// options.BaseTime = Your_Base_Time; // 如果要兼容老系统的雪花算法,此处应设置为老系统的BaseTime。
// ...... 其它参数参考 IdGeneratorOptions 定义。

// 保存参数(务必调用,否则参数设置不生效):
YitIdHelper.setIdGenerator(options);

// 以上过程只需全局一次,且应在生成ID之前完成。

第2步,生成ID:

// 初始化后,在任何需要生成ID的地方,调用以下方法:
long newId = YitIdHelper.nextId();

示例代码

    public static void main(String[] args) {
        for (int i = 0; i < 20; i++) {
            long id = YitIdHelper.nextId();
            if (i < 9) {
                System.out.println("雪花算法生成第0" + (i + 1) + "个id:" + id);
            } else {
                System.out.println("雪花算法生成第"+(i +1)+"个id:"+ id);
            }
        }
    }

打印

雪花算法生成第01个id: 494222368878661
雪花算法生成第02个id: 494222368878662
雪花算法生成第03个id: 494222368878663
雪花算法生成第04个id: 494222368882757
雪花算法生成第05个id: 494222368882758
雪花算法生成第06个id: 494222368882759
雪花算法生成第07个id: 494222368882760
雪花算法生成第08个id: 494222368882761
雪花算法生成第09个id: 494222368882762
雪花算法生成第10个id: 494222368882763
雪花算法生成第11个id: 494222368882764
雪花算法生成第12个id: 494222368882765
雪花算法生成第13个id: 494222368882766
雪花算法生成第14个id: 494222368882767
雪花算法生成第15个id: 494222368882768
雪花算法生成第16个id: 494222368882769
雪花算法生成第17个id: 494222368882770
雪花算法生成第18个id: 494222368882771
雪花算法生成第19个id: 494222368882772
雪花算法生成第20个id: 494222368882773

---------------yitter SnowFlake IdGenerator 介绍结束--------------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1318500.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【动态规划精选题目】2、路径问题模型

此动态规划系列主要讲解大约10个系列【后续持续更新】 本篇讲解路径问题模型中的6道经典题&#xff0c;会在讲解题目同时给出AC代码 目录 1、不同路径 2、不同路径2 3、珠宝的最大价值 4、下降路径最小和 5、最小路径和 6、地下城游戏 1、不同路径 class Solution { publi…

二叉树前,中序推后续_中,后续推前序

文章目录 介绍思路例子 介绍 二叉树是由根、左子树、右子树三部分组成。 二叉树的遍历方式又可以分为前序遍历&#xff0c;中序遍历&#xff0c;后序遍历。 前序遍历&#xff1a;根&#xff0c;左子树&#xff0c;右子树 中序遍历&#xff1a;左子树&#xff0c;根&#xff0…

Tor网络原理详解

引入 匿名通信是一种通过采用数据转发、内容加密、流量混淆等措施来隐藏通信内容及关系的隐私保护技术。为了提高通信的匿名性&#xff0c;这些数据转发链路通常由多跳加密代理服务节点构成&#xff0c;而所有这些节点即构成了匿名通信系统&#xff08;或称匿名通信网络&#…

ReenterLock重入锁

synchronized就是一种最简单的控制方法&#xff0c;它决定了一个线程释放可以访问临界区资源。 同时&#xff0c;Object.wait()方法和Object.notify()方法起到了线程等待和通知的作用。 ReenterLock重入锁可以完全替代关键字Synchoronized.重入锁是Synchoronized、Object.wait(…

使用podman管理容器

目录 1.安装及配置podman 2.镜像的命名 3.对镜像重新做标签 4.删除镜像 5.查看镜像的层结构 6.导出和导入镜像 7.创建容器 8.创建一个简单的容器 9.容器的生命周期 10.创建临时容器 11.指定容器中运行的命令 12.创建容器时使用变量 对于初学者来说&#xff0c;不太容易理…

深入解析HashMap数据结构及其应用

目录 引言 1. HashMap简介 2. 哈希表的基本原理 3. HashMap的内部结构 4. 哈希冲突的处理 5. HashMap的常见操作 6. HashMap的性能优化 7. 实际应用场景 结论 引言 在计算机科学中&#xff0c;数据结构是构建和组织数据的一种方式&#xff0c;而HashMap是其中一种常用…

TCP单人聊天

TCP和UDP两种通信方式它们都有着自己的优点和缺点 这两种通讯方式不通的地方就是TCP是一对一通信 UDP是一对多的通信方式 TCP通信 TCP通信方式呢 主要的通讯方式是一对一的通讯方式&#xff0c;也有着优点和缺点 它的优点对比于UDP来说就是可靠一点 因为它的通讯方式是需…

ripro后台登录后转圈和图标不显示的原因及解决方法

最近&#xff0c;好多小伙伴使用ripro主题的小伙伴们都发现&#xff0c;登录后台后&#xff0c;进入主题设置就转圈&#xff0c;等待老半天后好不容易显示页面了&#xff0c;却发现图标不显示了&#xff0c;都统一显示为方框。 这是因为后台的js、css这类静态资源托管用的是js…

02-分组查询group by和having的使用

分组查询 MySQL中默认是对整张表的数据进行操作即整张表为一组, 如果想对每一组的数据进行操作,这个时候我们需要使用分组查询 分组函数的执行顺序: 先根据where条件筛选数据,然后对查询到的数据进行分组,最后也可以采用having关键字过滤取得正确的数据 group by子句 在一条…

FME之FeatureReader转换器按表格内容读取矢量数据

问题&#xff1a;平时会遇到只用某个大数据里某小部分数据参与下一步数据处理&#xff0c;此时我们会用到FeatureReader转换器&#xff0c;一般是通过空间关系&#xff08;相交、包含&#xff09;来读取相应涉及的图斑矢量&#xff0c;但就有一个问题&#xff0c;加入你的启动器…

JS中浅拷贝和深拷贝

本篇文章咱们一起来学习下JS中的浅拷贝和深拷贝&#xff0c;了解它们在内存上的区别&#xff0c;并掌握浅拷贝和深拷贝的常用实现方法。 引用赋值 在学习拷贝之前&#xff0c;咱们先来看一个常见的情景&#xff0c;如下图&#xff1a; 大家觉得这是深拷贝还是浅拷贝&#xff0…

ensp创建配置环境,实现全网互访

文章目录 创建配置环境&#xff0c;实现全网互访配置步骤接入层交换机&#xff08;sw4、sw5&#xff09;划分vlan汇聚层交换机&#xff08;sw2、sw3&#xff09;配置ip地址作为vlan网关、与sw1 ip地址直连核心层交换机&#xff08;sw1&#xff09;配置ip地址与汇聚层交换机&…

计算机网络:数据链路层(VLAN)

今天又学到一个知识&#xff0c;加油&#xff01; 目录 一、传统局域网的局限&#xff08;促进VLAN的诞生&#xff09; 二、VLAN简介 三、VLAN的实现 总结 一、传统局域网的局限&#xff08;促进VLAN的诞生&#xff09; 缺乏流量隔离:即使把组流量局域化道一个单一交换机中…

Java小案例-RocketMQ的11种消息类型,你知道几种?(请求应答消息)

前言 Rocket的请求应答消息是指在使用Rocket&#xff08;这里可能是RocketMQ或者Rocket框架&#xff09;进行通信时&#xff0c;客户端发送一个请求到服务端&#xff0c;然后服务端处理该请求并返回一个响应的过程中的数据交换。 在RocketMQ中&#xff1a; 请求应答消息通常…

MySQL性能测试(完整版)

MySQL性能测试之SysBench 一、SysBench安装 1、mac安装命令&#xff1a;&#xff08;其他系统安装对应的命令即可&#xff0c;不影响后面的使用&#xff09; brew install sysbench2、查看是否安装成功&#xff1b; sysbench --version附&#xff1a; &#xff08;1&#x…

The Grid – Responsive WordPress Grid响应式网格插件

点击阅读The Grid – Responsive WordPress Grid响应式网格插件原文 The Grid – Responsive WordPress Grid响应式网格插件是一个高级 wordpress 网格插件&#xff0c;它允许您在完全可定制且响应迅速的网格系统中展示任何自定义帖子类型。 Grid WordPress 非常适合展示您的博…

runCatching异常捕获onSuccess/onFailure返回函数,Kotlin

runCatching异常捕获onSuccess/onFailure返回函数&#xff0c;Kotlin fun test(a: Int, b: Int) {runCatching {a / b}.onSuccess {println("onSuccess: $it")return ok(it)}.onFailure {println("onFailure: $it")return fail(it)} }fun ok(o: Any) {prin…

QT第一步

文章目录 软件下载软件安装QT的程序组新建项目 软件下载 qt下载网址&#xff1a;https://download.qt.io/archive/qt/   关于版本&#xff1a;     我选择的版本是5.14.2&#xff0c;这个版本是最后的二进制安装包的版本&#xff0c;在往后的版本就需要在线安装了。并且5…

常用网安渗透工具及命令(扫目录、解密爆破、漏洞信息搜索)

目录 dirsearch&#xff1a; dirmap&#xff1a; 输入目标 文件读取 ciphey&#xff08;很强的一个自动解密工具&#xff09;&#xff1a; john(破解密码)&#xff1a; whatweb指纹识别&#xff1a; searchsploit&#xff1a; 例1&#xff1a; 例2&#xff1a; 例3&…

QT5 CMake进行开发

配置环境 因为是使用CMake进行开发&#xff0c;所以推荐使用的QT版本是 5.14.2。因为楼主有 vs2015的环境&#xff0c;所以在安装QT时选择的是 msvc 2015 64bit msvc 2017 32bit 勾选了所有需要的模块。kit配置如下 图中画框的地方是比较关键的地方&#xff0c;1. 指定编译器…