python学习1补充

news2025/1/17 0:10:22

大家好,这里是七七,这个专栏是用代码实例来学习的,不是去介绍很多知识的。

话不多说,开始今天的内容

目录

代码1

代码2

代码3 

 代码4

代码5

学习1的总代码


代码1

grouped=df.groupby('单品编码')
result={}

grouped=df.groupby('单品编码')是对名为df的数据框按照列名为’单品编码’进行分组操作。这将返回一个GroupBy对象,该对象可以用于按照分组对数据进行聚合操作。

然后,result={}是创建一个空字典对象。

代码2

for name, group in grouped
    unique_months=group['月份'].unique()
    total_months=len(unique_months)
    season=[]
    season_list=[0]*4
    if 3 in unique_months or 4 in unique_months or 5 in unique_months:
        season.append("春季")
        season_list[0]=1
    if 6 in unique_months or 7 in unique_months or 8 in unique_months:
        season.append("夏季")
        season_list[1] = 1
    if 9 in unique_months or 10 in unique_months or 11 in unique_months:
        season.append("秋季")
        season_list[2] = 1
    if 12 in unique_months or 1 in unique_months or 2 in unique_months:
        season.append("冬季")
        season_list[3] = 1
    result[name]={
        '出现的月份':unique_months,
        '总共出现的月份数':total_months,
        '出现的季节':season,
        "季节数":len(season),
        "季节列表":season_list
    }

这段代码是对`GroupBy`对象进行迭代,并针对每个分组进行操作,最终生成一个结果字典`result`,记录了每个分组的统计信息。

对于每个分组,首先通过`group['月份'].unique()`获取该分组下的"月份"列中的唯一值,并将其存储在`unique_months`中。接着,使用`len()`函数计算`unique_months`的长度,即该分组出现的不同月份总数,并将其存储在`total_months`中。

为了确定该分组出现的季节信息,定义了一个空的列表`season`和一个包含4个零元素的列表`season_list`。然后,通过判断`unique_months`中是否包含特定月份,来确定季节的出现情况。如果`unique_months`中出现了3、4或5月份,则将"春季"添加到`season`列表中,并将`season_list[0]`置为1。同样,对其他月份进行判断,分别将"夏季"、"秋季"和"冬季"添加到`season`列表中,并将相应的`season_list`元素置为1。

最后,将该分组的名称作为`result`字典的键,对应的结果作为值存储起来。结果字典的值包括:'出现的月份'、'总共出现的月份数'、'出现的季节'、'季节数'以及'季节列表'。这样,在每次迭代结束后,`result`字典就会记录了每个分组的统计信息。

通过这段代码,您可以获取每个分组出现的月份、总共出现的月份数以及该分组所处的季节信息,并将这些统计信息存储在结果字典中,以便后续分析和使用。

当对一个`GroupBy`对象进行迭代时,会返回一个由元组`(name, group)`组成的迭代器。其中,`name`表示分组的名称,`group`表示相应的分组数据。

具体迭代的过程如下:

1. 首先,根据指定的列对数据进行分组,生成`GroupBy`对象 `grouped`。

2. 使用`for name, group in grouped`语法,开始对`grouped`进行迭代。在每次迭代中,会将一个分组的名称赋值给`name`,将该分组的数据赋值给`group`。

3. 在每个迭代中,你可以通过`name`获取当前分组的唯一标识,可以通过`group`来进行该分组内的其他操作和处理。

4. 继续迭代,直到遍历完所有的分组。

总的来说,这个迭代过程允许您逐个访问每个分组,并对每个分组进行操作和分析,比如计算统计量、应用函数等。您可以根据实际需求在每次迭代中进行适当的处理。

 输出结果:

代码3 

count_all=0
count_all_list = []
for key, value in result.items():
    if value['季节数']==4:
        count_all+=1
        count_all_list.append(key)
    print(count_all)
        print(count_all_list)

result.items() 返回一个字典中的所有键值对。这个方法把字典中的每一个键值对都转化为(键, 值)的元组,然后把这些元组放到一个迭代器中。

这段代码是在result字典中针对每个键值对进行操作,并统计符合条件的键值对的数量。

首先,定义了一个变量count_all和一个列表count_all_listcount_all记录包含4个季节的所有分组的数量,count_all_list记录符合条件的分组的名称。

然后,使用for key, value in result.items()语法,开始从result字典中逐个取出键和值,进行循环操作。在循环中,使用if value['季节数']==4的语法来判断当前字典的季节数是否为4,如果是,就将该分组的名称添加到count_all_list中,并将count_all自增1。

最后,通过print(count_all)print(count_all_list)语句,将符合条件的分组数量和分组名称输出。

输出如下:

 代码4

df['年份']=df['日期'].dt.year
result=df.groupby(['单品编码','年份']).agg({'日期':'nunique'}).reset_index()
result.rename(columns={'日期':'天数'},inplace=True)

第一行就不介绍了,在python学习1-CSDN博客中已经介绍过

接下来,使用 `df.groupby(['单品编码','年份'])` 对数据框 `df` 进行分组操作,按照 '单品编码' 和 '年份' 进行分组。然后,通过 `.agg({'日期':'nunique'})` 对分组后的每个组进行聚合操作,对 '日期' 列应用 `nunique()` 函数,计算每个组中独特日期值的数量。这样,结果数据框 `result` 将包含 '单品编码'、'年份' 和 '日期'(记为 '天数')三个列。

最后,通过 `.reset_index()` 重置 `result` 数据框的索引,将多级索引还原为默认的整数索引。然后使用 `.rename(columns={'日期':'天数'}, inplace=True)` 的方式,将 '日期' 列的名称改为 '天数'。这样,`result` 数据框就得到了最终的结果。

通过以上的操作,您可以得到按照 '单品编码' 和 '年份' 进行分组的数据框 `result`,其中记录了每个组中独特日期值的数量。这个结果可以帮助您进行进一步的数据分析和处理。

.agg() 是 pandas 库用于分组数据计算的方法,其可以用于对 DF 或者 Series 数据进行一些分组操作,并对分组后的数据进行需要的一些聚合处理。其中,{'日期':'nunique'} 这个参数是 .agg() 中最重要的一部分。

{'日期':'nunique'} 表示对于 ‘日期’ 这一列的数据,应用 nunique() 函数进行聚合,具体含义是,分组后统计每个组(例如每个商品以及每个年份)中独特日期值的数量,即去重后的独特日期值的数量。

nunique() 函数用于计算一列数据中除去重复值之外的独特(唯一)值的数量,其语法格式为:Series.nunique(dropna=True),其中:

  • Series 为要统计独特值的数据列;
  • dropna 表示是否排除空值,默认为 True,即排除空值。

在上面的代码中,由于分组使用了 ‘单品编码’ 和 ‘年份’ 两个列,所以会对所有在同一年份中的同一种商品进行分组,统计该商品在该年份内销售的天数,最终将结果存储在 ‘天数’ 列中。

代码5

max_days=result.groupby('单品编码')['天数'].max().reset_index()
#print(max_days)
plt.hist(max_days['天数'],bins=35,edgecolor='k')
plt.xlabel('天数')
plt.ylabel('频数')
plt.title('天数分布直方图')
plt.show()
filtered_df=max_days[max_days['天数']<=15]
cnt=0
cnt_list=[]
for index,row in filtered_df.iterrows():
    cnt_list.append(row['单品编码'])
    print(f"单品编码:{row['单品编码']},一年最多出现{row['天数']}天")
    cnt+=1
    print(cnt)

这段代码的作用是,首先通过 `result` 数据框中的 '单品编码' 列和 '天数' 列计算出每个单品在最多的一年内销售的天数,并将结果保存在 `max_days` 数据框中;然后,绘制 `max_days` 数据框中 '天数' 列的频数分布直方图,以便进行天数分布的可视化;最后把最多销售天数小于等于 15 天的单品筛选出来,输出它们在其销售最多一年内的销售天数,并统计筛选出的单品数量。

具体解释如下:

`max_days=result.groupby('单品编码')['天数'].max().reset_index()`: 通过对 `result` 数据框按照 '单品编码' 列进行分组,对每组中的 '天数' 列求出最大值,表示该单品在最多的一年内销售的天数,从而得到结果数据框 `max_days`。

`plt.hist(max_days['天数'],bins=35,edgecolor='k')`: 使用 `plt.hist()` 可视化库,绘制直方图,并将 `max_days` 数据框中的 '天数' 列作为参数传入,以便绘制该列的分布图。`bins=35` 表示直方图的数量为 35,`edgecolor='k'` 表示直方图的边界颜色为黑色。

`plt.xlabel('天数')` 和 `plt.ylabel('频数')`: 分别指定直方图的横轴和纵轴的标签。

`plt.title('天数分布直方图')`: 指定直方图的标题。

`plt.show()`: 显示绘制出来的直方图。

`filtered_df=max_days[max_days['天数']<=15]`: 从 `max_days` 数据框中筛选出在最多销售天数小于等于 15 天的单品,将结果存储在 `filtered_df` 数据框中。

`cnt=0` 和 `cnt_list=[]`: 分别初始化计数器和空列表。

`for index,row in filtered_df.iterrows():`: 对 `filtered_df` 数据框进行遍历,依次读取每一行数据。

- `cnt_list.append(row['单品编码'])`:将当前行数据中的 '单品编码' 列的值加入到列表 `cnt_list` 中。

- `print(f"单品编码:{row['单品编码']},一年最多出现{row['天数']}天")`:输出当前行数据中的 '单品编码'和 '天数'列的值。

- `cnt+=1` 和 `print(cnt)`:对计数器进行累加操作,并输出当前筛选出的单品数量。

通过以上操作,可以将所有在其销售最多一年内销售天数小于等于15天的单品筛选出来,并将它们在最多销售天数的那一年内的销售天数打印出来,方便进行进一步的数据分析和处理。同时,直方图也可以让我们更加直观的了解不同单品销售天数的分布情况。

学习1的总代码

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=[u'simHei']
plt.rcParams['axes.unicode_minus']=False

xlsx_file = 'data/附件1.xlsx'
df_1 = pd.read_excel(xlsx_file)

xlsx_file = 'data/附件3.xlsx'
df = pd.read_excel(xlsx_file)

df['日期']=pd.to_datetime(df['日期'])
df['月份']=df['日期'].dt.month

mapping_dict=df_1.set_index('单品编码')['分类名称'].to_dict()
df['品类']=df['单品编码'].map(mapping_dict)
print(df.head(5))

grouped=df.groupby('单品编码')
result={}

for name, group in grouped:
    unique_months=group['月份'].unique()
    total_months=len(unique_months)
    season=[]
    season_list=[0]*4
    if 3 in unique_months or 4 in unique_months or 5 in unique_months:
        season.append("春季")
        season_list[0]=1
    if 6 in unique_months or 7 in unique_months or 8 in unique_months:
        season.append("夏季")
        season_list[1] = 1
    if 9 in unique_months or 10 in unique_months or 11 in unique_months:
        season.append("秋季")
        season_list[2] = 1
    if 12 in unique_months or 1 in unique_months or 2 in unique_months:
        season.append("冬季")
        season_list[3] = 1
    result[name]={
        '出现的月份':unique_months,
        '总共出现的月份数':total_months,
        '出现的季节':season,
        "季节数":len(season),
        "季节列表":season_list
    }
count_all=0
count_all_list = []
for key, value in result.items():
    if value['季节数']==4:
        count_all+=1
        count_all_list.append(key)
print(count_all)
print(count_all_list)

df['年份']=df['日期'].dt.year
result=df.groupby(['单品编码','年份']).agg({'日期':'nunique'}).reset_index()
result.rename(columns={'日期':'天数'},inplace=True)

#print(result)

max_days=result.groupby('单品编码')['天数'].max().reset_index()
#print(max_days)
plt.hist(max_days['天数'],bins=35,edgecolor='k')
plt.xlabel('天数')
plt.ylabel('频数')
plt.title('天数分布直方图')
plt.show()
filtered_df=max_days[max_days['天数']<=15]
cnt=0
cnt_list=[]
for index,row in filtered_df.iterrows():
    cnt_list.append(row['单品编码'])
    print(f"单品编码:{row['单品编码']},一年最多出现{row['天数']}天")
    cnt+=1
    print(cnt)

这段代码只是将两个表格中的数据进行一系列的预处理,按照时间分类

总输出如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1318362.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

条款5:了解c++默默编写并调用了哪些函数

如果你不自己声明&#xff0c;编译器会替你声明&#xff08;编译器版本的&#xff09;拷贝构造函数、拷贝赋值运算符和析构函数。此外&#xff0c;如果你没有声明任何构造函数&#xff0c;编译器会为你声明一个默认构造函数。 class Empty{};本质上和写成下面这样是一样的: c…

英文论文降重修改技巧 papergpt

大家好&#xff0c;今天来聊聊英文论文降重修改技巧&#xff0c;希望能给大家提供一点参考。 以下是针对论文重复率高的情况&#xff0c;提供一些修改建议和技巧&#xff0c;可以借助此类工具&#xff1a; 英文论文降重修改技巧 作为网站编辑&#xff0c;我们经常需要处理大量…

加密的艺术:对称加密的奇妙之处(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

菜鸟学习日记(python)——匿名函数

Python 使用 lambda 来创建匿名函数。 lambda 函数是一种小型、匿名的内联函数&#xff0c;它可以具有任意数量的参数&#xff0c;但只能有一个表达式。 匿名函数的一般格式如下&#xff1a; lambda 参数列表:表达式 表达式用于计算并返回函数结果 lambda 函数通常用于编写…

如何优雅地观察 Vue.js 3 中 localStorage 的变化?

为什么要这样做&#xff1f; 原生 localStorage 只能监听同源跨不同页面的变化。然而&#xff0c;对于单页面应用程序来说&#xff0c;这种方式并不实用。因此&#xff0c;我打算创建一个自定义钩子来监视 localStorage 中的变化。 方法 我们需要重写 localStorage 下的所有…

相机基础概念介绍

一.概念 Camera的成像原理 景物通过镜头&#xff08;LENS&#xff09;生成的光学图像投射到图像传感器(Sensor)表面上&#xff0c;然后转为模拟的电信号&#xff0c;经过 A/D&#xff08;模数转换&#xff09;转换后变为数字图像信号&#xff0c;再送到数字信号处理芯片&…

虚拟机下Ubuntu上网设置

文章目录 一、虚拟机上网的两种方式1.1 NAT模式&#xff08;Network Address Translation&#xff09;1.2 桥接模式&#xff08;Bridge Mode&#xff09;1.3 简介 二、实际配置2.1 NAT模式配置2.2 桥接模式配置 之前跟着博客配了好几个也没用&#xff0c;后来自己慢慢模式实践测…

机器学习---模型评估

1、混淆矩阵 对以上混淆矩阵的解释&#xff1a; P&#xff1a;样本数据中的正例数。 N&#xff1a;样本数据中的负例数。 Y&#xff1a;通过模型预测出来的正例数。 N&#xff1a;通过模型预测出来的负例数。 True Positives:真阳性&#xff0c;表示实际是正样本预测成正样…

波奇学Linux:进程终止

写时拷贝底层原理图 子进程谁先运行&#xff0c;由调度器决定 进程退出场景 代码运行完毕&#xff0c;结果正确&#xff1a;有返回值&#xff0c;返回0 代码运行完毕&#xff0c;结果不正确&#xff1a;有返回值&#xff0c;返回非0 代码异常终止。没有返回值 return 0的…

小姐姐跳舞,AI 视频生成太酷了

大家好&#xff0c;我是章北海 最近AI视频领域的研究进展神速&#xff0c;看得眼花缭乱。 这里老章就把最近几天看过印象深刻的四个项目介绍给大家&#xff0c;同时附上项目相关简介、论文、代码等资料&#xff0c;感兴趣的同学可以深度研究一下。 《SMPLer-X:放大表达性人体…

设计模式(2)--对象创建(5)--单件

1. 意图 保证一个类仅有一个实例&#xff0c;并提供一个访问它的全局访问点。 2. 一种角色 单件(Singleton) 3. 优点 3.1 对唯一实例的受控访问 3.2 缩小名空间(对全局变量的改进) 3.3 允许对操作和表示精化(可以有子类) 3.4 允许可变数目的实例 3.5 比类操作更灵活 4. 缺点…

mipi dsi协议DBI/DPI接口

MIPI dsi协议中的DBI/DPI接口主要用于主机和display设备之间的数据传输&#xff0c;说的更通俗一点就是DSI RX控制器和实际的显示面板之间的接口&#xff1b;dsi 协议spec中对DBI/DPI有描述&#xff1a; DSI协议中对DBI 接口模式命名为command mode operation&#xff0c;对DP…

[NCTF2019]Fake XML cookbook1

提示 xml注入 一般遇到像登录页之类的就因该想到sql注入、弱口令或者xml等 随便输入抓包 这里明显就是xml注入 这里我们来简单了解一下xml注入 这里是普通的xml注入 xml注入其实和sql注入类似&#xff0c;利用了xml的解析机制如果系统没有将‘<’‘>’进行转义&#xff0…

《点云处理》 提取点云内点和外点

前言 关于内点&#xff08;inliers&#xff09;和外点&#xff08;outliers&#xff09;在点云处理方向上是个非常常见的名词。有时候&#xff0c;内点也会被称之为有效点&#xff0c;而外点会被称之为无效点。所谓有效和无效都是相对而言的&#xff0c;无效不一定是真的没有意…

【数据结构—队列的实现】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、队列 1.1队列的概念及结构 二、队列的实现 2.1头文件的实现—Queue.h 2.2源文件的实现—Queue.c 2.3源文件的测试—test.c 三、测试队列实际数据的展示 3.…

第一个程序(STM32F103点灯)

点亮LED 看原理图确定控制LED的引脚看主芯片手册确定如何设置/控制引脚写程序 LED有很多种&#xff0c;像插脚的&#xff0c;贴片的。 它们长得完全不一样&#xff0c;因此我们在原理图中将它抽象出来。 嵌入式系统中&#xff0c;一个LED的电阻非常低&#xff0c;I U/R&…

RabbitMQ搭建集群环境、配置镜像集群、负载均衡

RabbitMQ集群搭建 Linux安装RabbitMQ下载安装基本操作命令开启管理界面及配置 RabbitMQ集群搭建确定rabbitmq安装目录启动第一个节点启动第二个节点停止命令创建集群查看集群集群管理 RabbitMQ镜像集群配置启用HA策略创建一个镜像队列测试镜像队列 负载均衡-HAProxy安装HAProxy…

GoWin FPGA, GPIO--- startup1

一个Bank只能用一个电压&#xff0c;假如同一个Bank&#xff0c;在引脚里设置不同的电压&#xff0c;编译不过。 解释说明 2. 错误引脚限制 以上编译设置会导致编译错误。

低阶的人机交互和高阶的人机交互

低阶的人机交互和高阶的人机交互是指在人与机器之间进行信息交流和操作时的不同层次和方式。低阶的人机交互通常是指简单直接的交互方式&#xff0c;主要依赖于人类用户对界面或设备的直接操控。以下是几个低阶的人机交互示例&#xff1a; 键盘和鼠标&#xff1a;使用键盘输入文…

线程安全说明

线程安全性的定义 线程安全性是指当多个线程同时访问某个类时&#xff0c;这个类的行为仍然是正确的。在不同的线程交叉执行的情况下&#xff0c;程序仍能够保持一致的状态。 示例&#xff1a;线程安全的计数器 考虑一个简单的计数器类&#xff0c;它需要保证在多线程环境下…