助力工业产品质检,基于yolov5l集成CBAM注意力机制开发构建智能PCB电路板质检分析系统

news2024/11/16 15:30:36

AI助力工业质检智能生产制造已经有很多成功的实践应用了,在我们前面的系列博文中也有很多对应的实践,感兴趣的话可以自行移步阅读前面的博文即可,这里本文的核心目的就是想要基于改进的yolov5l来开发构建用于PCB电路板智能检测分析的模型,主要是将CBAM这一注意力机制集成到原生的yolov5l中,首先看下实例效果:

简单看下数据集:

YOLO格式标注数据如下:

VOC格式标注数据如下:

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test


# Classes
names:
  0: missing_hole
  1: mouse_bite
  2: open_circuit
  3: short
  4: spur
  5: spurious_copper

模型文件如下:
【yolov5l】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 6  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

【yolov5l-cbam】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 6  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
   [-1, 1, CBAM, [1024]],

   [[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

训练阶段保持完全相同的参数设置,等待训练完成后我们来整体对比看下。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

可以看到:整合CBAM注意力后的yolov5l性能有了明显的提升,从全方位的多个指标对比来看都有了提升。感兴趣的话也都可以动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1314556.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GZ015 机器人系统集成应用技术样题1-学生赛

2023年全国职业院校技能大赛 高职组“机器人系统集成应用技术”赛项 竞赛任务书(学生赛) 样题1 选手须知: 本任务书共 25页,如出现任务书缺页、字迹不清等问题,请及时向裁判示意,并进行任务书的更换。参赛队…

【Trino权威指南(第二版)】Trino的架构、trino架构组件、 trino连接器架构的细节、trino的查询执行模型

文章目录 一. Trino架构1. 架构概览2. 协调器3. 发现服务4. 工作节点 二. 基于连接器的架构三. 查询执行模型1. 解析—>查询计划2. 查询计划 —> 分布式查询计划3. 运行阶段3.1. 基础概念切片:并行单元page 与 exchange算子pipeline切片的driverOperator 3.2.…

C#上位机与欧姆龙PLC的通信01----项目背景

最近,【西门庆】作为项目经理负责一个70万的北京项目,需要在工控系统集成软件开发中和欧 姆龙PLC对接,考虑项目现场情况优先想到了采用FinsTCP通讯协议,接下来就是记录如何一步步实现这些通讯过程的,希望给电气工程师&…

Netty常见的设计模式

简介 设计模式在软件开发中起着至关重要的作用,它们是解决常见问题的经过验证的解决方案。而Netty作为一个优秀的网络应用程序框架,同样也采用了许多设计模式来提供高性能和可扩展性。在本文中,我们将探讨Netty中使用的一些关键设计模式&…

探索Linux服务器配置信息的命令

目录 前言1 uname2 lscpu3 free4 df5 lspci6 lsusb7 lshw结语 前言 Linux系统提供了许多命令,用于获取和查看服务器的软硬件配置信息。这些命令可以帮助管理员和用户了解系统的状态、资源使用情况以及硬件设备的相关信息。以下是一些常用的命令以及它们的作用、使用…

【单调栈]LeetCode84: 柱状图中最大的矩形

作者推荐 【动态规划】【广度优先搜索】LeetCode:2617 网格图中最少访问的格子数 本文涉及的知识点 单调栈 题目 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形…

解决kernel32.dll丢失的修复方式,kernel32.dll预防错误的方法

kernel32.dll文件是电脑中的一个重要文件,如果电脑出现kernel32.dll丢失的错误提示,那么电脑中的一些程序将不能正常使用,那么出现这样的问题有什么解决办法呢?那么今天就和大家说说解决kernel32.dll丢失的修复方式。 一.kernel32…

elasticsearch|大数据|kibana的安装(https+密码)

前言: kibana是比较好安装的,但https密码就比较麻烦一些了,下面将就如何安装一个可在生产使用的kibana做一个简单的讲述 一, kibana版本和下载地址 这里我想还是强调一下,kibana的版本需要和elasticsearch的版本一…

数据库基础(实体,管理系统,日志,数据类型,键与约束)

基本概念 数据(Data): 数据是描述事物的信息,可以是数字、文字、图像、音频等形式。数据库中存储的就是这些数据,这些数据可以是具体的实体(如一个人的信息),也可以是抽象的概念&…

数据持久化与临时存储的对决:localStorage 与 sessionStorage(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

Elasticsearch的 8.x常用api汇总

ES的查询语法比较复杂,对于初学者需要在不断练习中才会逐渐掌握,本文汇总了ES各种查询语法以及常用api,可以作为新手的实用笔记 首先,安装 Kibana! 下载Elasticsearch,官方下载页面;Elasticsearch 参考,官方文档;<

智能优化算法应用:基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于静电放电算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.静电放电算法4.实验参数设定5.算法结果6.…

目标检测图片截取目标分类图片

如果要训练一个分类模型却没有特定的分类数据集怎么办呢&#xff1f;可以换一种思路&#xff0c;将带有该目标的图片对所有想要的目标进行画标注框然后进行截图&#xff0c;就能得到特定的分类数据了。这么做的目的是&#xff1a;带有该目标的图片可能不会少&#xff0c;但是带…

【系统设计】如何确保消息不会丢失?

一、前言 对于大部分业务系统来说&#xff0c;丢消息意味着数据丢失&#xff0c;是完全无法接受的。其实&#xff0c;现在主流的消息队列产品都提供了非常完善的消息可靠性保证机制&#xff0c;完全可以做到在消息传递过程中&#xff0c;即使发生网络中断或者硬件故障&#xf…

Initial用法-FPGA入门3

Initial是什么 FPGA Initial是一种在FPGA中进行初始化的方法。在FPGA设备上&#xff0c;初始值决定了逻辑门的状态和寄存器的初始值。FPGA Initial可以通过设置初始值来控制电路在上电后的初始状态。 Initial的作用 2.1&#xff0c;控制电路启动时的初始状态 通过设置FPGA Ini…

迅为RK3568开发板使用OpenCV处理图像-ROI区域-位置提取ROI

在图像处理过程中&#xff0c;我们可能会对图像的某一个特定区域感兴趣&#xff0c;该区域被称为感兴趣区域&#xff08;Region of Interest, ROI&#xff09;。在设定感兴趣区域 ROI 后&#xff0c;就可以对该区域进行整体操作。 位置提取 ROI 本小节代码在配套资料“iTOP-3…

KVM虚拟机console使用

注意这些设置都在你要进入虚拟机里设置&#xff0c;不是在你的物理机设置 首先debian12 需要设置 grep ttyS0 /etc/securetty #没有则加上 echo ttyS0 >> /etc/securetty #启动 systemctl start serial-gettyttyS0 systemctl enable serial-gettyttyS0#CentOS Stream …

MIT18.06线性代数 笔记3

文章目录 对称矩阵及正定性复数矩阵和快速傅里叶变换正定矩阵和最小值相似矩阵和若尔当形奇异值分解线性变换及对应矩阵基变换和图像压缩单元检测3复习左右逆和伪逆期末复习 对称矩阵及正定性 特征值是实数特征向量垂直>标准正交 谱定理&#xff0c;主轴定理 为什么对称矩…

智能优化算法应用:基于供需算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于供需算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于供需算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.供需算法4.实验参数设定5.算法结果6.参考文献7.MA…

企业微信旧版-新版网络连接错误,无法登录的解决方案

一.企业微微信无法登录故障 二.解决方案 1.网上的解决方案 **检查网络连接&#xff1a;**确保你的计算机正常连接到互联网。尝试打开其他网页&#xff0c;以确保网络连接正常。 **防火墙和安全软件&#xff1a;**某些防火墙或安全软件可能会阻止企业微信的正常连接。请确保你…