基于轻量级yolov5-seg全系列【n/s/m/l/x】参数模型开发构建工业场景下不同参数量级的滚珠丝杠传动表面缺陷分割检测系统

news2024/11/17 9:53:16

工业场景下的滚珠丝杠传动表面缺陷分割检测系统在我们前面的博文中已经有了相关的开发实践了,感兴趣的话可以自行阅读即可:

《助力工业生产质检,基于轻量级yolov5-seg开发构建工业场景下滚珠丝杠传动表面缺陷分割检测系统》

前文主要是以seg系列最为轻量级的模型作为基准开发模型来进行模型的开发构建的,本文的主要目的是想要应用开发seg全系列不同参数量级的模型来综合对比不同量级参数模型的性能结果,首先看下实例效果:

简单看下数据集:

这里我直接使用的是官方v7.0分支的代码,项目地址在这里,如下所示:

如果不会使用可以参考我的教程:

《基于yolov5-v7.0开发实践实例分割模型超详细教程》

非常详细的操作实践教程,这里就不再赘述了。

训练数据配置文件如下所示:

#Dataset
path: ./dataset
train: images/train 
val: images/train  
test:  images/train 
 
 
 
# Classes
names:
  0: Pitting

【n系列模型】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]

【s系列模型】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.5  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]

【m系列模型】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1 # number of classes
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]

【l系列模型】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1 # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]

【x系列模型】

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 1  # number of classes
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]],  # Detect(P3, P4, P5)
  ]

所有系列的模型在训练阶段保持完全相同的参数设置,等待漫长的训练过程结束之后我们来对不同参数量级的模型进行综合对比分析。

这里如果感兴趣的话可以自行移步阅读前面的博文:

《做CV相关的论文,实验对比部分可以怎么展示模型各方面的对比指标?漂亮的图表怎么出?以yolov5实例分割场景为例,构建【n/s/m/l/x】全系列不同参数量级的对比模型实验》

官方核心绘图实现如下:

def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
    """
    Metric-confidence curve
    """
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
 
    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)
 
    y = smooth(py.mean(0), 0.05)
    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title(f'{ylabel}-Confidence Curve')
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
 
 
 
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
    """
    Precision-recall curve
    """
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)
 
    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)
 
    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
    ax.set_xlabel('Recall')
    ax.set_ylabel('Precision')
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    ax.set_title('Precision-Recall Curve')
    fig.savefig(save_dir, dpi=250)
    plt.close(fig)
 
 
 
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
    """ 
    Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:  True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls:  Predicted object classes (nparray).
        target_cls:  True object classes (nparray).
        plot:  Plot precision-recall curve at mAP@0.5
        save_dir:  Plot save directory
    # Returns
        The average precision as computed in py-faster-rcnn.
    """
 
    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
 
    # Find unique classes
    unique_classes, nt = np.unique(target_cls, return_counts=True)
    nc = unique_classes.shape[0]  # number of classes, number of detections
 
    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = nt[ci]  # number of labels
        n_p = i.sum()  # number of predictions
        if n_p == 0 or n_l == 0:
            continue
 
        # Accumulate FPs and TPs
        fpc = (1 - tp[i]).cumsum(0)
        tpc = tp[i].cumsum(0)
 
        # Recall
        recall = tpc / (n_l + eps)  # recall curve
        r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases
 
        # Precision
        precision = tpc / (tpc + fpc)  # precision curve
        p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
 
        # AP from recall-precision curve
        for j in range(tp.shape[1]):
            ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
            if plot and j == 0:
                py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5
 
    # Compute F1 (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + eps)
    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
    names = dict(enumerate(names))  # to dict
    if plot:
        plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
        plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
        plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
        plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
 
    i = smooth(f1.mean(0), 0.1).argmax()  # max F1 index
    p, r, f1 = p[:, i], r[:, i], f1[:, i]
    tp = (r * nt).round()  # true positives
    fp = (tp / (p + eps) - tp).round()  # false positives
    return tp, fp, p, r, f1, ap, unique_classes.astype(int)
 
 
 
class Annotator:
    # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
    def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
        assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
        non_ascii = not is_ascii(example)  # non-latin labels, i.e. asian, arabic, cyrillic
        self.pil = pil or non_ascii
        if self.pil:  # use PIL
            self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
            self.draw = ImageDraw.Draw(self.im)
            self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font,
                                       size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
        else:  # use cv2
            self.im = im
        self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
 
    def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
        # Add one xyxy box to image with label
        if self.pil or not is_ascii(label):
            self.draw.rectangle(box, width=self.lw, outline=color)  # box
            if label:
                w, h = self.font.getsize(label)  # text width, height
                outside = box[1] - h >= 0  # label fits outside box
                self.draw.rectangle(
                    (box[0], box[1] - h if outside else box[1], box[0] + w + 1,
                     box[1] + 1 if outside else box[1] + h + 1),
                    fill=color,
                )
                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
                self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
        else:  # cv2
            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
            if label:
                tf = max(self.lw - 1, 1)  # font thickness
                w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
                outside = p1[1] - h >= 3
                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
                cv2.putText(self.im,
                            label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                            0,
                            self.lw / 3,
                            txt_color,
                            thickness=tf,
                            lineType=cv2.LINE_AA)
 
    def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False):
        """Plot masks at once.
        Args:
            masks (tensor): predicted masks on cuda, shape: [n, h, w]
            colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
            im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
            alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
        """
        if self.pil:
            # convert to numpy first
            self.im = np.asarray(self.im).copy()
        if len(masks) == 0:
            self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255
        colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0
        colors = colors[:, None, None]  # shape(n,1,1,3)
        masks = masks.unsqueeze(3)  # shape(n,h,w,1)
        masks_color = masks * (colors * alpha)  # shape(n,h,w,3)
 
        inv_alph_masks = (1 - masks * alpha).cumprod(0)  # shape(n,h,w,1)
        mcs = (masks_color * inv_alph_masks).sum(0) * 2  # mask color summand shape(n,h,w,3)
 
        im_gpu = im_gpu.flip(dims=[0])  # flip channel
        im_gpu = im_gpu.permute(1, 2, 0).contiguous()  # shape(h,w,3)
        im_gpu = im_gpu * inv_alph_masks[-1] + mcs
        im_mask = (im_gpu * 255).byte().cpu().numpy()
        self.im[:] = im_mask if retina_masks else scale_image(im_gpu.shape, im_mask, self.im.shape)
        if self.pil:
            # convert im back to PIL and update draw
            self.fromarray(self.im)
 
    def rectangle(self, xy, fill=None, outline=None, width=1):
        # Add rectangle to image (PIL-only)
        self.draw.rectangle(xy, fill, outline, width)
 
    def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
        # Add text to image (PIL-only)
        if anchor == 'bottom':  # start y from font bottom
            w, h = self.font.getsize(text)  # text width, height
            xy[1] += 1 - h
        self.draw.text(xy, text, fill=txt_color, font=self.font)
 
    def fromarray(self, im):
        # Update self.im from a numpy array
        self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
        self.draw = ImageDraw.Draw(self.im)
 
    def result(self):
        # Return annotated image as array
        return np.asarray(self.im)
 
 
 
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
    # Plot LR simulating training for full epochs
    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
    y = []
    for _ in range(epochs):
        scheduler.step()
        y.append(optimizer.param_groups[0]['lr'])
    plt.plot(y, '.-', label='LR')
    plt.xlabel('epoch')
    plt.ylabel('LR')
    plt.grid()
    plt.xlim(0, epochs)
    plt.ylim(0)
    plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
    plt.close()
 
 
def plot_labels(labels, names=(), save_dir=Path('')):
    # plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
    nc = int(c.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
 
    # seaborn correlogram
    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
    plt.close()
 
    # matplotlib labels
    matplotlib.use('svg')  # faster
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    with contextlib.suppress(Exception):  # color histogram bars by class
        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
    ax[0].set_ylabel('instances')
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel('classes')
    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
 
    # rectangles
    labels[:, 1:3] = 0.5  # center
    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
    for cls, *box in labels[:1000]:
        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis('off')
 
    for a in [0, 1, 2, 3]:
        for s in ['top', 'right', 'left', 'bottom']:
            ax[a].spines[s].set_visible(False)
 
    plt.savefig(save_dir / 'labels.jpg', dpi=200)
    matplotlib.use('Agg')
    plt.close()
 
 
def plot_results(file='path/to/results.csv', dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob('results*.csv'))
    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j].astype('float')
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.info(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results.png', dpi=200)
    plt.close()

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss对比曲线】

上面是从单个指标的维度来横向地对比不同模型的表现能力,通过自由的组合上述的指标数据提取和可视化部分代码,可以得到更为全面的实现,如下所示:

【F1值曲线】

【loss曲线】

【mAP0.5曲线】

【mAP0.5:mAP0.95曲线】

【precision曲线】

【recall曲线】

整体来看:n系列的结果最差,s系列次之,m系列和l、x系列没有很明显的差距,但m系列的模型在边缘端设备部署的时候有性能和推理速度的优势,最终落地选择的是m系列的模型,我们还尝试了以m系列为基准集成了一些tricks进行性能的提升优化处理,另外还做了一些相应的轻量化处理工作,后面有时间的话再通过博文记录吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1314255.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#Winform+DevExpress打开相机拍照功能实例

1&#xff0c;先展示一下界面&#xff0c;点击打开相机会打开另一个界面 如下所示&#xff1b; 2&#xff0c;点击上图拍照 按钮 会把图片显示在第一个界面上 3&#xff0c; Dev还可以打开指定的相机&#xff0c;比如只打开平板电脑的后置摄像头 以Microsoft 为例 点击打开…

HarmonyOS使用HTTP访问网络

HTTP数据请求 1 概述 日常生活中我们使用应用程序看新闻、发送消息等&#xff0c;都需要连接到互联网&#xff0c;从服务端获取数据。例如&#xff0c;新闻应用可以从新闻服务器中获取最新的热点新闻&#xff0c;从而给用户打造更加丰富、更加实用的体验。 那么要实现这样一种…

【Linux】Redis 数据库安装教程(Ubuntu 22.04)

前言 Redis是一个开源的内存数据库&#xff0c;它可以用作键值存储、缓存和消息代理。它支持各种数据结构&#xff0c;包括字符串、哈希、列表、集合、有序集合等。Redis通常被用于构建高性能、可扩展的应用程序&#xff0c;特别是那些需要快速访问数据和实时数据处理的应用场…

案例064:基于微信小程序的考研论坛设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

VSCode如何编辑Markdown文件

VSCode如何编辑Markdown文件 一、安装插件二、常用命令 一、安装插件 需要在VSCode安装一个插件Markdown Theme Kit 二、常用命令 1、CtrlShiftV 预览模式

实战体验 Amazon SageMaker 机器学习

&#xff08;声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 亚马逊云科技开发者社区、知乎、自媒体平台、第三方开发者媒体等亚马逊云科技官方渠道&#xff09; 文章目录 Amazon SageMaker 原理生成示例数据训练模型部署模型 实…

在ViewPager下面加圆点指示(使用selector方式)

前面讲了如何使用ViewPager来做多个可滑动的页面。今天在页面的下面加上一排小圆点&#xff0c;用于指示当前在第几页。效果如下&#xff08;请忽略颜色和图案&#xff09;&#xff1a; 一、产生一个小圆点的视图 1、在drawable下产生一个选中和不选中颜色不同的小圆点形状&am…

Vue用<br>自定义换行,用v-html渲染,hover的时候title也需要使用自定义换行或者显示一行用省略号展示,hover展示全部

哈喽 大家好啊,最近遇到一个需求&#xff1a; 需求一&#xff1a;用<br>自定义换行&#xff0c;hover的时候title也需要使用自定义换行 然后我便想到了用<br>自定义换行&#xff0c;然后用v-html渲染&#xff0c;则就正常显示了 但是title只能用文本&#xff0c…

IDEA添加Apifox插件后,返回参数不详细解决办法

Apifox官方文档地址(文档中返回的是特殊情况&#xff0c;跟我现在项目的返回不一样&#xff0c;因此需要更改配置) 点击跳转到官方API地址 实现步骤分为两步&#xff1a;第一步&#xff1a;添加配置&#xff0c;第二步使用注解。 1.添加配置 打开Idea设置&#xff0c;添加配置…

GZ015 机器人系统集成应用技术样题2-学生赛

2023年全国职业院校技能大赛 高职组“机器人系统集成应用技术”赛项 竞赛任务书&#xff08;学生赛&#xff09; 样题2 选手须知&#xff1a; 本任务书共 25页&#xff0c;如出现任务书缺页、字迹不清等问题&#xff0c;请及时向裁判示意&#xff0c;并进行任务书的更换。参赛队…

《Linux C编程实战》笔记:文件属性操作函数

获取文件属性 stat函数 在shell下直接使用ls就可以获得文件属性&#xff0c;但是在程序里应该怎么获得呢&#xff1f; #include<sys/types.h> #include <sys/stat.h> #include <unistd.h> int stat(const char *file_name,struct stat *buf); int fstat(i…

Excel中MATCH和INDEX函数的用法详解,以及Vlookup的数组用法

match函数 目的&#xff1a;查询函数&#xff0c;范围单元格中搜索特定的项&#xff0c;然后返回该项在此区域中的相对位置。 For example:让 match 去【隔壁办公室】找【老张】 Match 回复&#xff1a;【老张】坐在【隔壁办公室】第【四】个座位上 公式&#xff1a;【 mat…

nodejs+vue+微信小程序+python+PHP邮件分类系统的设计与实现-计算机毕业设计推荐

方便安装&#xff0c;减少了维护的工作量&#xff0c;只需要通过服务器端的更新就可以实现新系统的发布&#xff0c;提高了邮件分类系统的可扩展性和可移植性。 E-mail是信息化时代最重要的联系工具之一&#xff0c;在日常的工作学习中具有非常重要作用。电子邮件作为互联网技术…

XSS漏洞

一、漏洞原理 允许攻击者在用户的浏览器中执行恶意的脚本。只要是能输入参数的地方都可能产生XSS&#xff0c;比如说评论区&#xff0c;搜索框等。 二、漏洞利用 XXS漏洞常用于钓鱼&#xff0c;Cookie值窃取等操作。可以和文件上传漏洞打组合拳。 靶场&#xff1a;Pikachu靶…

UI5 development on VS Studio code

今天来分享一下如何VS studio code 上UI5开发环境的搭建 1.安装Node.js 路径&#xff1a;Node.js 因安装步骤较为简单&#xff0c;故不在此赘述。 验证方法如下&#xff1a;WINR-->CMD--->node --version 出现下图即可 2. 安装UI5 CLI (为了后面我们方便使用UI5 的命令…

黑豹程序员-axios+springmvc传递数组

问题 奇怪的现象&#xff0c;axios在往后台传递数组时&#xff0c;springmvc竟然接收不到 解决 尝试多次无果&#xff0c;突然看一篇文章写vue中的数组不是真正的数组需要强转转化JSON.stringify 将信将疑下测试了一把&#xff0c;还真的传递成功了。 不光要JSON.stringify…

风速预测(四)基于Pytorch的EMD-Transformer模型

目录 前言 1 风速数据EMD分解与可视化 1.1 导入数据 1.2 EMD分解 2 数据集制作与预处理 2.1 先划分数据集&#xff0c;按照8&#xff1a;2划分训练集和测试集 2.2 设置滑动窗口大小为7&#xff0c;制作数据集 3 基于Pytorch的EMD-Transformer模型预测 3.1 数据加载&am…

leetcode做题笔记2415. 反转二叉树的奇数层

给你一棵 完美 二叉树的根节点 root &#xff0c;请你反转这棵树中每个 奇数 层的节点值。 例如&#xff0c;假设第 3 层的节点值是 [2,1,3,4,7,11,29,18] &#xff0c;那么反转后它应该变成 [18,29,11,7,4,3,1,2] 。 反转后&#xff0c;返回树的根节点。 完美 二叉树需满足…

vue2 tailwindcss jit模式下热更新失效

按照网上教程安装的tailwindcss&#xff0c;但是修改类名后热更新的时候样式没有生效&#xff0c;参考了大佬的文章&#xff0c;解决了该问题。 安装cross-env 修改前 "dev": " vue-cli-service serve", 修改后 "dev": "cross-env TAILWIN…

【通用】Linux,VSCode,IDEA,Eclipse等资源相对位置

正文 不论是 IDEA、Linux、VSCode、cmd等等吧&#xff0c;都遵循这个规则&#xff1a; 如果以斜杠开头&#xff0c;表示从根开始找&#xff1a; IDEA的根是classpath&#xff08;classpath就是项目被编译后&#xff0c;位于 target下的 classes文件夹&#xff0c;或者位于ta…