使用opencv的Sobel算子实现图像边缘检测

news2024/11/17 13:50:11

1 边缘检测介绍

图像边缘检测技术是图像处理和计算机视觉等领域最基本的问题,也是经典的技术难题之一。如何快速、精确地提取图像边缘信息,一直是国内外的研究热点,同时边缘的检测也是图像处理中的一个难题。早期的经典算法包括边缘算子方法、曲面拟合的方法、模板匹配方法、阈值法等。

近年来,随着数学理论与人工智能技术的发展,出现了许多新的边缘检测方法,如Roberts、Laplacan、Canny等图像的边缘检测方法。这些方法的应用对于高水平的特征提取、特征描述、目标识别和图像理解有重大的影响。然而,在成像处理的过程中投影、混合、失真和噪声等会导致图像模糊和变形,这使得人们一直致力于构造具有良好特性的边缘检测算子。

1.1 什么是边缘检测

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化,包括深度不连续、表面方向不连续、物质属性变化和场景照明变化。边缘检测特征是提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

1.2 边缘检测的方法

人类视觉系统认识目标的过程分为两步:首先,把图像边缘与背景分离出来;然后,到图像的细节,辨认出图像的轮廓。计算机视觉正是模仿人类视觉的过程。

因此,在检测物体边缘时先对轮廓点进行粗略检测,然后通过链接规则把原来检测到的轮廓点连接起来,同时检测和连接遗漏的边界点及去除虚假的边界点。图像的边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图像处理中一个重要的环节。然而,边缘检测是图像处理中的一个难题,因为实际景物图像的边缘往往是各种类型的边缘及它们模糊化后结果的组合,且实际图像信号存在噪声。噪声和边缘都属于高频信号,很难用频带做取舍。

边缘是指图像周围像素灰度有阶跃变化或屋顶状变化的像素集合,存在于目标与背景、目标与目标、区域与区域、基元与基元之间。边缘具有方向和幅度两个特征,沿边缘走向,像素值变化比较平缓;垂直于边缘走向,像素值变化比较剧烈,可能呈现阶跃状,也可能呈现斜坡状。因此,边缘可以分为两种:

  • 一种为阶跃性边缘,两边的像素灰度值有着明显的不同;

  • 另一种为屋顶状边缘,位于灰度值从增加到减少的变化转折点。

对于阶跃性边缘,二阶方向导数在边缘处呈零交叉;对于屋顶状边缘,二阶方向导数在边缘处取极值。有许多方法可以用于边缘检测,绝大部分可以划分为两类:基于搜索的一类和基于零穿越的一类。

  • 基于搜索:通过寻找图像一阶导数中的最大值来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值,代表算法是Sobel算子和Scharr算子。

  • 基于零穿越:通过寻找图像二阶导数零穿越来寻找边界,代表算法是Laplacian算子。

1.3 典型算子比较

算子优缺点
Roberts对具有陡峭的低噪声的图像处理效果较好,但利用Roberts算子提取边缘的结果是边缘比较粗,因此边缘定位不是很准确
Sobel对灰度渐变和噪声较多的图像处理效果比较好,Sobel算子对边缘定位比较准确
Kirsch对灰度渐变和噪声较多的图像处理效果较好
Prewitt 对灰度渐变和噪声较多的图像处理效果较好
Laplacian对图像中的阶跃性边缘点定位准确,对噪声非常敏感,丢失一部分边缘的方向信息,造成一些不连续的检测边缘
LoGLoG算子经常出现双边缘像素边界,而且该检测算法对噪声比较敏感,所以很少用LoG算子检测边缘,而是用来判断边缘像素是位于图像的明区还是暗区
Canny此方法不容易受噪声的干扰,能够检测到真正的弱边缘。在edge函数中,最有效的边缘检测方法是Canny方法。该方法的优点在于使用两种不同的阈值分别检测强边缘和弱边缘,并且仅当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。因此,这种方法不容易被噪声”填充“,更容易检测出真正的弱边缘。

2 使用opencv的Sobel算子实现边缘检测

图像边缘检测主要包括图像获取、图像滤波、图像增强、图像检测、图像定位5个步骤。

Sobel边缘检测算法比较简单,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,Sobel算子是高斯平滑与微分操作的结合体,所以其抗噪声能力很强,用途较多。尤其是效率要求较高,而对细纹理不太关心的时候。

2.1 检测原理

对于不连续的函数,一阶导数可以写作:

所以有

假设要处理的图像为I,在两个方向求导:

  • 水平变化: 将图像I 与奇数大小的模版进行卷积,结果为G​x​​​ 。比如,当模板大小为3时, G​x​为:

  • 垂直变化: 将图像I 与奇数大小的模版进行卷积,结果为G​y​​​ 。比如,当模板大小为3时,G​y​为:

在图像的每一点,结合以上两个结果求出:

统计极大值所在的位置,就是图像的边缘。

注意:当内核大小为3时, 以上Sobel内核可能产生比较明显的误差, 为解决这一问题,我们使用Scharr函数,但该函数仅作用于大小为3的内核。该函数的运算与Sobel函数一样快,但结果却更加精确,其计算方法为:

2.2 sobel函数原型

Sobel_x_or_y = cv2.Sobel(src, ddepth, dx, dy, dst, ksize, scale, delta, borderType)

参数:

  • src:传入的图像

  • ddepth: 图像的深度

  • dx和dy: 指求导的阶数,0表示这个方向上没有求导,取值为0、1。

  • ksize: 是Sobel算子的大小,即卷积核的大小,必须为奇数1、3、5、7,默认为3。

  • 注意:如果ksize=-1,就演变成为3x3的Scharr算子。

  • scale:缩放导数的比例常数,默认情况为没有伸缩系数。

  • borderType:图像边界的模式,默认值为cv2.BORDER_DEFAULT。

Sobel函数求完导数后会有负值,还有会大于255的值。而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。因此要使用16位有符号的数据类型,即cv2.CV_16S。处理完图像后,再使用cv2.convertScaleAbs()函数将其转回原来的uint8格式,否则图像无法显示。

Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted( )函数将其组合起来

Scale_abs = cv2.convertScaleAbs(x)  # 格式转换函数
result = cv2.addWeighted(src1, alpha, src2, beta) # 图像混合

2.3 检测代码

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

# 1 读取图像
img = cv.imread('../data/dog02.jpg', 0)

# 2 计算Sobel卷积结果
x = cv.Sobel(img, cv.CV_16S, 1, 0)
y = cv.Sobel(img, cv.CV_16S, 0, 1)

# 3 将数据进行转换
Scale_absX = cv.convertScaleAbs(x)  # convert 转换  scale 缩放
Scale_absY = cv.convertScaleAbs(y)

# 4 结果合成
result = cv.addWeighted(Scale_absX, 0.5, Scale_absY, 0.5, 0)

# 5 图像显示
plt.figure(figsize=(10, 8), dpi=100)
plt.subplot(121), plt.imshow(img, cmap=plt.cm.gray), plt.title('original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap=plt.cm.gray), plt.title('Sobel')
plt.xticks([]), plt.yticks([])
plt.show()

运行代码显示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1314201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

瑞芯微rv1126边缘计算盒子高性价比2.0TOPS INT8/INT16

边缘计算盒子 瑞芯微rv1126 | 2.0TOPS INT8/INT16 ● 集成了NPU,算力高达2.0TOPsINT8/INT16。 ● 支持H.264/H.265/MJPEG视频编解码;支持多级别视频质量配置及编码复杂度设置。 ● 编解码性能 3840 x 216030 fps 1080p30 fps encoding 3840 x 21603…

力扣题目学习笔记(OC + Swift) 12. 整数转罗马数字

12. 整数转罗马数字 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XI…

eclipse连接mysql数据库(下载eclipse,下载安装mysql,下载mysql驱动)

前言: 使用版本:eclipse2017,mysql5.7.0,MySQL的jar建议使用最新的,可以避免警告! 1:下载安装:eclipse,mysql在我之前博客中有 http://t.csdnimg.cn/UW5fshttp://t.csdn…

使用 Matplotlib 和 mplcursors 创建交互式数据可视化,鼠标悬停动态显示数据

在本博客中,我们将探讨如何使用 Matplotlib(Python 中流行的绘图库)和 mplcursors(一个为 Matplotlib 图表添加交互式数据光标的库)创建交互式数据可视化。 效果图: 环境设置 首先,请确保已…

stable-diffusion-webui(AI绘画)项目实现,即遇到的问题

实现步骤: 为了使环境中的库版本不会乱,导致自己电脑原来一些项目无法运行最好使用虚拟环境 下载miniconda 在搜索中搜所miniconda找到 建立虚拟环境 conda create --name sdwebui python3.10.6 每次运行激活这个虚拟环境 conda activate sdwebui …

算法通关村第十二关—字符串转换(青铜)

一、转换成小写字母 LeetCode709.给你一个字符串s,将该字符串中的大写字母转换成相同的小写字母,返回新的字符串。 示例1: 输入:s"Hello" 输出:"hello" 示例2: 输入:s&qu…

万户 OA OfficeServer.jsp 任意文件上传漏洞复现

0x01 产品简介 万户OA是面向政府组织及企事业单位的FlexOffice自主安全协同办公平台。 0x02 漏洞概述 万户OA OfficeServer.jsp接口存在任意文件上传漏洞,攻击者可通过该漏洞上传任意文件从而控制整个服务器。 0x03 复现环境 FOFA: (banner="OASESSIONID" &a…

Vmware Windows10安装Apache php

文章目录 一、下载必要的软件二、安装Apache三、安装php四、php连接Apache五、测试 一、下载必要的软件 Apache:https://www.apachelounge.com/download/ PHP:http://windows.php.net/download/ 二、安装Apache 将下载的压缩包解压,移动里…

0基础学习VR全景平台篇第128篇:720VR全景拍摄设备推荐

上课!全体起立~ 大家好,欢迎观看蛙色官方系列全景摄影课程! 本篇教程,小编为大家推荐720VR全景拍摄所需要的设备器材。上节我们提到,理论上任意相机和镜头都能够拍摄全景,但为了标准化制作流程&#xff0…

Golang在 Docker 中交叉编译 Windows

前言: 前端时间把本地的 Golang 开发环境卸载了,如果编写代码的话就是启动一个 Golang 的 Docker 容器。这样做对于服务端开发本来也是没有问题的,但是有时候想要把程序放到 Windows 上面来执行,那就遇到麻烦了。因为 Docker 容器…

VSCode解决本地浏览器需要跨域问题

这里写目录标题 测试用代码执行代码后控制台报错现象解决方案 测试用代码 先把测试用的代码贴出来 测试代码结构 index.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Com…

git checkout进行更改分支

git clone https://gitee.com/yaleguo1/minit-learning-demo.git下载代码。 cd minit-learning-demo/进入目录里边。 ls -l看一下当前分支的内容。 git checkout geek_chapter02更改分支到geek_chapter02。 ls -l看一下目录里边的内容。

【Axure RP9】的详细安装及Axure入门应用

目录 一 Axure入门安装 1.1 Axure是什么? 1.2 Axure应用场景 1.3 Axure安装 1.3.1 汉化 1.3.2 授权 二, Axure应用 1.1 Axure软件界面概述 1.2 Axure的应用 1.2.1备份 1.2.2 视图显示及网格设置 1.2.3 生成HTML文件 1.2.4 备注说明 一 Axure入门安装 1.1 Axure…

如何发布自定义 npm 组件包

准备工作 1. 注册 npm 账号 还没有 npm 账号&#xff1f;去官网注册&#xff1a; https://www.npmjs.com 需要记住用户名、密码、邮箱&#xff0c;后面需要用到。 2. 查看本地 npm 镜像&#xff0c;如果不是默认的&#xff0c;需要改回来 npm config get registry重置镜像路…

安装统信UOS服务器操作系统1060

原文链接&#xff1a;安装统信UOS服务器操作系统1060 hello&#xff0c;大家好啊&#xff01;今天我要给大家介绍的是如何安装统信UOS服务器操作系统1060。统信UOS是一款基于Linux内核&#xff0c;专为中国市场定制开发的操作系统。它不仅提供了良好的用户体验&#xff0c;还在…

翻译: 为什么需要微调大模型 Why Fine-tuning LLM

虽然RAG提供了一种方式来给大型语言模型提供额外的信息&#xff0c;但还有另一种叫做微调&#xff08;fine-tuning&#xff09;的技术&#xff0c;也是给它更多信息的一种方式。特别是&#xff0c;如果你有的上下文比大型语言模型的输入长度或上下文窗口长度更大&#xff0c;那…

单片机Freertos入门(二)任务的创建、删除

1、串口配置 首先将串口进行配置&#xff0c;后续经常会应用&#xff0c;具体步骤点击&#xff1a;串口配置。 2、任务 创建一个任务&#xff0c;就是开辟一个空间、每个任务中都会有while&#xff08;1&#xff09;死循环。 2.1相关函数 动态创建&#xff1a;xTaskCreate…

Linux第一个小程序——进度条

Linux第一个小程序——进度条 1. 前言2. 缓冲区概念3. \r && \n4. 进度条实现4.1 初级进度条4.2 升级进度条 1. 前言 在我们写这个小程序之前&#xff0c;我们要用到我们学的三个知识点 gcc的使用vim的使用make/makefile的使用 除此之外还需要一些其他的知识点&…

如何在jenkins容器中安装python+httprunner+pytest+git+allure(一)

背景&#xff1a; API接口自动化使用python语言实现&#xff0c;利用httprunner框架编写自动化用例场景&#xff08;执行的时候还是依赖pytest),使用jenkins自动构建git上的源代码&#xff0c;并产生allure报告可视化展示API执行结果。 步骤 1.进入jenkins容器 注意使用roo…

数据库和数据仓库的区别

数据仓库是在数据库已知大量存在的前提下&#xff0c;为了进一步挖掘数据资源&#xff0c;为了决策需要产生的&#xff1b;数据仓库在设计的时候有意添加反范式设计&#xff0c;目的是提高查询效率 对比内容数据库数据仓库数据内容近期值历史的 归档的数据数据目标面向业务操作…