[C/C++]——内存管理

news2024/11/14 11:05:05

学习C/C++的内存管理

  • 前言:
  • 一、C/C++的内存分布
  • 二、C语言中动态内存管理方式
  • 三、C++中动态内存管理方式
    • 3.1、new/delete操作符
      • 3.1.2、new/delete操作内置类型
      • 3.1.3、new/delete操作自定义类型
    • 3.2、认识operator new和operator delete函数
    • 3.3、了解new和delete的实现原理
      • 3.3.1、内置类型
      • 3.3.2、自定义类型
      • 3.3.3、new和delete的实现原理
    • 3.4、学习定位new(placement-new)
  • 四、动态内存管理常规面试题
    • 4.1 malloc/free和new/delete的区别
    • 4.2 内存泄漏
      • 4.2.1什么是内存泄漏,内存泄漏的危害
      • 4.2.2 内存泄漏分类
      • 4.2.3 如何检测内存泄漏
      • 4.2.4 如何避免内存泄漏

前言:

c++的学习是一个爬坡的过程,希望大家坚持下去。

一、C/C++的内存分布

为了更直观的学习,我直接展示案例。大家多深入思考,一个案例会了,别的题目也就会了。
在这里插入图片描述
在这里插入图片描述

1代表代码段;2、3代表数据段;4代表堆区;5代表栈区。

value在哪里:数据段
values在哪里:数据段
values1在哪里:数据段
values2在哪里:栈区
arr在哪里:栈区
arr1在哪里:栈区 ; *arr1在哪里:栈区。
ptr在哪里:栈区 ;*ptr在哪里:代码段。
ptr1 在哪里:栈区 ;*ptr1 在哪里:堆区 。

结论:

  • 内核空间:操作系统内核-kernel,受硬件保护,用户不能进行读写,用于执行各种机器指令。
  • 栈:非静态局部变量/函数参数/返回值等等,栈是向下增长的
  • 内存映射段:是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享的共享内存,做进程间通信。
  • 堆:用于程序运行时动态内存分配,堆是可以上增长的。
  • 数据段(静态区):存储全局数据和静态数据
  • 代码段(常量区):存储可执行的代码/只读常量

二、C语言中动态内存管理方式

下面我将回顾一下C语言的内存管理方式,更详细的信息可以看我以前的文章C语言动态内存管理。

涉及四个主要函数,分别为malloc、calloc、realloc、free

  • malloc:动态申请一块内存空间,不进行初始化,函数原型为void* malloc(size_t size),在使用malloc函数的返回值是要进行强制类型转换。
  • calloc:动态申请内存空间,并将申请的空间的内容初始化为0。函数原型为:void* calloc(size_t num, size_tsize),num表示申请内存空间的块数,size表示每块空间的大小。
  • realloc:调整一块已经申请的内存空间的大小,函数原型为void* realloc(void* ptr, size_t size),其中ptr指向要调整大小的内存空间、size表示调整后的内存空间大小。
  • free:释放动态申请的内存空间。

三、C++中动态内存管理方式

C++兼容C语言,所以C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理

malloc不方便解决动态申请的自定义类型对象的初始化问题。
new是为了解决动态申请的自定义类型对象的初始化问题。

3.1、new/delete操作符

在C++中,可以使用new来申请堆区内存空间,采用delete释放堆区内存空间。
new的使用语法为:

  • 申请单块内存空间不初始化:数据类型*ptr = new 数据类型
  • 申请数组空间不初始化:数据类型*ptr = new 数据类型[数据量]
  • 申请单块内存空间并初始化:数据类型 *ptr = new 数据类型 (初始化值)
  • 申请数组空间并初始化:数据类型 *ptr = new数据类型{初始化值1, 初始化值2, … }
    delete的使用语法为:
  • 释放单个内存空间:delete 指向动态开辟的内存区域的指针
  • 释放数组空间:delete[] 指向动态开辟的内存区域的指针 --其中[]就表示数组

3.1.2、new/delete操作内置类型

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
void test()
{
    //未初始化,结果是随机值
    int* ptr = new int;           //动态申请一个int类型的空间
    int* ptr1 = new int[10];      //动态申请10个int类型的空间
    int(*ptr2)[3] = new int[2][3]; //(*ptr2)[3]为数组指针,存放3个一维数组。
    //初始化,对应数据
    int* ptr3 = new int(10);
    int* ptr4 = new int[3]{1,2,3};
    int(*ptr5)[3] = new int[2][3]{ {1,2,3},{4,5,6} };
    cout << *ptr << endl;
    cout << *ptr1 << endl;
    cout << **ptr2 << endl;
    cout << *ptr3 << endl;
    cout << *ptr4<< endl;
    cout << **ptr5 << endl;
    delete ptr;
    delete[] ptr1;
    delete[] ptr2;
    delete ptr3;
    delete[] ptr4;
    delete[] ptr5;
}
int main()
{
    test();
    return 0;
}

随机值是一样的,其实是编译器的一种优化。
在这里插入图片描述
注意:
申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],且必须匹配起来使用

3.1.3、new/delete操作自定义类型

C++动态内存管理和C语言动态内存管理最大的区别在于二者对于自定义类型的处理,C语言中malloc/calloc/realloc函数只负责开辟空间,free函数只负责释放空间,而C++在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
class A
{
public:
    A(int vue=0)
        :a(vue),
        next(nullptr)
    {
        cout << "A():"<<this<< endl;
    };
    ~A()
    {
        cout << "~A():"<<this<< endl;
}
private:
    int a;
    A* next;

};
int main()
{
    //new的本质是开空间+调用构造函数初始化
    A* ptr = new A;
    A* ptr1 = new A(1);
    //创建A的对象
    A aa1(1);
    A aa2(2);
    A aa3(3);
    //有名对象
    A* ptr2 = new A[3]{aa1,aa2,aa3};
    //匿名对象
    A* ptr3 = new A[3]{A(1),A(2),A(3)};
    //直接给值
    A* ptr4 = new A[3]{1,2,3};
    //delete的本质是析构+释放空间
    delete ptr;
    delete ptr1;
    delete[] ptr2;
    delete[] ptr3;
    delete[] ptr4;
    return 0;
}

注意:
内置类型的对象在申请释放空间时,new和malloc除了用法有区别,别的没有区别。

3.2、认识operator new和operator delete函数

在C++中,new和delete是用户进行动态内存申请和释放的操作符,operator new和operator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间

operator new和operator delete 函数不是new 和delete的运算符重载,因为他们的参数没有自定义类型,而是库里实现的全局函数,只是取名为operator new和operator delete,不要被运算符重载所误导,这个需要我们进行单独的记忆;

C++底层operator new和operator delete的函数实现:

// operator new:
// 该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;
// 申请空间失败尝试执行空间不足应对措施,如果用户设置了应对措施,则继续申请,否则抛异常。
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}

// operator delete:
// 该函数最终是通过free来释放空间的
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;
	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK);  // block other threads
	__TRY
		// get a pointer to memory block header
		pHead = pHdr(pUserData);
	// verify block type
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);  //此处调用free函数
	__FINALLY
		_munlock(_HEAP_LOCK);  // release other threads
	__END_TRY_FINALLY
		return;
}

// free的实现
#define  free(p)        _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常,operator delete 最终是通过free来释放空间的

下面我将通过具体的实例来解释这个现象:
通过查看反汇编来验证new和delete的底层调用

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;

int main()
{
    int* a = new int;
    delete a;
    int* a1 = new int[10];
    delete[] a1;
    return 0;
}

在这里插入图片描述

对于new[]和delete[]来说,他们调用operator new[]和operator delete[]函数来实现其功能,但是他们的底层也是调用operator new 和operator delete 函数。

C和C++开辟空间失败的区别
我们知道,不断开辟空间或者开辟一块很大的空间就可能造成空间开辟失败,C语言的开辟空间失败,失败返回的是一个空指针,所以我们可以通过检查指针是否为空来判断是否开辟成功,而C++是面向对象的语言,通常采用的是抛异常的方式(抛异常必须要捕获,不捕获就会出问题),符合面向对象处理错误的方式。
抛异常的捕获方式:

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
int main()
{
	try
	{//抛异常,遇到异常直接返回,它是可以跨函数得。
		// new失败 抛异常 -- 不需要检查返回值
		char* p1 = new char[1024 * 1024 * 1024];
		cout << (void*)p1 << endl;
		char* p2 = new char[1024 * 1024 * 1024];
		cout << (void*)p2 << endl;
	}
	catch (const exception& e)
	{
		cout << e.what() << endl; //what指发生了什么
	}
	return 0;
}

在这里插入图片描述

3.3、了解new和delete的实现原理

3.3.1、内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

3.3.2、自定义类型

new的原理
1.调用operator new函数申请空间
2.在申请的空间上执行构造函数,完成对象的构造
delete的原理
1.在空间上执行析构函数,完成对象中资源的清理工作
2.调用operator delete函数释放对象的空间
new T[N]的原理
1.调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
2.在申请的空间上执行N次构造函数
delete[ ]的原理
1.在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2.调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

3.3.3、new和delete的实现原理

new/delete的底层是通过调用operator new和operator delete来实现的。

  • new的实现原理:(1)调用operator new申请内存空间 (2)调用自定义类型的构造函数
  • delete的实现原理:(1)调用自定义类型的析构函数 (2)调用operator delete释放内存空间
  • new[]的实现原理:(1)调用operator new[]申请空间 (2)调用自定义类型的构造函数
  • delete[]的实现原理:(1)调用自定义类型的析构函数 (2)调用operator delete[]释放空间
    在这里插入图片描述

3.4、学习定位new(placement-new)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

使用场景
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。
内存池
内存池(Memory Pool)是一种动态内存分配与管理技术,通常情况下,程序员习惯直接使用new,delete,malloc,free等API申请和释放内存,这样导致的后果就是:当程序运行的时间很长的时候,由于所申请的内存块的大小不定,频繁使用时会造成大量的内存碎片从而降低程序和操作系统的性能
内存池则是在真正使用内存之前,先申请分配一大块内存(内存池)留作备用。当程序员申请内存时,从池中取出一块动态分配,当程序员释放时,将释放的内存放回到池内,再次申请,就可以从池里取出来使用,并尽量与周边的空闲内存块合并。若内存池不够时,则自动扩大内存池,从操作系统中申请更大的内存池。

使用operator new申请动态内存空间,不会调用自定义类型的构造函数。但是有时候我们希望在operator new函数申请的空间上调用构造函数,可构造函数却不支持直接显式调用,这是就需要用到定位new来实现。
定位new使用语法:new(指向动态开辟的内存空间的指针)类名(传给构造函数的参数)
虽然构造函数不能显示调用,但是析构函数可以显示调用。

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;
class A
{
public:
	A(int a1 = 1, int a2 = 2, double a3 = 2.2)
		: _a1(a1)
		, _a2(a2)
		, _a3(a3)
	{
		cout << " A(int a1 = "<<_a1<<" int a2 = "<<_a2 <<" double a3 ="<<_a3 << endl;
	}

	~A()
	{
	cout << "~A()" <<endl;
	}

private:
	int _a1;
	int _a2;
	double _a3;
};

int main()
{
	A* pa1 = nullptr;
	A* pa2 = nullptr;
	try
	{
		pa1 = (A*)operator new(sizeof(A));
		pa2 = (A*)operator new(sizeof(A));
	}
	catch (const std::exception& e)
	{
	cout << e.what() << endl;
	}

	//用定位new来显示调用构造函数
	new(pa1)A(1, 2, 3.3);
	new(pa2)A(2, 3, 4.4);

	//可以显示调用析构函数
	(*pa1).~A();
	pa2->~A();
	operator delete(pa1);
	operator delete(pa2);
	return 0;
}

在这里插入图片描述

四、动态内存管理常规面试题

4.1 malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:
1.malloc和free是函数,new和delete是操作符
2.malloc申请的空间不会初始化,new可以初始化
3.malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,是多个对象,[]中指定对象个数即可
4.malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
5.malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常
6.申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理

4.2 内存泄漏

如果申请了动态内存空间却不手动释放,就会造成内存泄漏。

4.2.1什么是内存泄漏,内存泄漏的危害

  • 动态申请内存空间,不使用了,但却没有释放,就存在内存泄漏,使可用内存越来越少。
  • 对于正常结束的进程,进程结束时泄漏掉的内存会自动还给系统,不会有太大危害。
    对于非正常结束的进程,如僵尸进程,以及需要长期运行的程序,如服务器程序,出现内存泄漏的危害就很大,系统会变得越来越慢,甚至卡死宕机
    所以,动态申请的内存空间一定要记得释放!释放动态内存使用的函数(操作符)一定要与申请动态内存时用的函数(操作符)匹配:malloc–free、new-- delete、new[] – delete[]。

4.2.2 内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:

1.堆内存泄漏(Heap leak)

堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

2.系统资源泄漏

指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。

4.2.3 如何检测内存泄漏

在vs下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks()函数进行简单检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。

因此写代码时一定要小心,尤其是动态内存操作时,一定要记着释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位下。如果工程比较大,内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏检测工具处理的。

在linux下内存泄漏检测:Linux下几款内存泄漏检测工具
在windows下使用第三方工具:VHD工具说明
其他工具:内存泄漏工具比较

4.2.4 如何避免内存泄漏

  • 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
  • 采用RAII思想或者智能指针来管理资源。
  • 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
  • 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。

[总结]
内存泄漏非常常见,解决方案分为两种:
1、事前预防型。如智能指针等。
2、事后查错型。如泄漏检测工具

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1308836.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

修改Element UI可清空Input的样式

如图所示&#xff0c;修改Input右侧的清空按钮位置&#xff1a; <el-input class"create-catalog-ipt"placeholder"请输入相关章节标题"v-model"currentCatalogTitle"clearable /> // SCSS环境 ::v-deep {.create-catalog-ipt {input {he…

web前端项目-影视网站开发

影视网站 本项目主要使用到了 HTML&#xff1b;CSS&#xff1b;JavaScript脚本技术&#xff1b;AJAX无刷新技术&#xff1b;jQuery等技术实现了动态影视网页 运行效果&#xff1a; 一&#xff1a;index.html <!DOCTYPE> <html lang"en"> <head>…

【01分数规划】ABC324F

[ABC324F] Beautiful Path - 洛谷 思路 首先看到这个形式很容易想到 01 分数规划&#xff0c;即去二分答案&#xff0c;然后就是转化成 是否存在一个路径使得 sigma b - mid * sigma c > 0 显然只需要改变一下边权&#xff0c;跑一遍最长路即可 #include <bits/stdc.h…

招聘网站爬虫及可视化的实现-计算机毕业设计推荐 django

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

docker-compose Install gitea

gitea 前言 Gitea 是一个轻量级的 DevOps 平台软件。从开发计划到产品成型的整个软件生命周期,他都能够高效而轻松的帮助团队和开发者。包括 Git 托管、代码审查、团队协作、软件包注册和 CI/CD。它与 GitHub、Bitbucket 和 GitLab 等比较类似。 Gitea 最初是从 Gogs 分支而来…

C语言小游戏之三子棋(可以做期末设计作业)

哈喽大家好&#xff0c;今天为大家带来一个用C语言写的小游戏--三子棋&#xff0c;就是大家小时候用树枝和石子玩的那种游戏&#xff0c;这个小项目可以用于大家的C语言期末设计作业&#xff0c;不会很难&#xff0c;都是C语言基本的操作 下面是游戏截图&#xff1a; 完全可以…

C语言写的 mini版的 http 服务器 , 很详细

文章目录 效果展示整体架构流程技术细节完整代码 效果展示 例如&#xff1a;htpp://192.168.23.140/home.html -> 正确的请求格式 home.html 这个资源是放在我们服务器里面的 , 并不是随便访问的资源,当然我们可以放很多的资源进去. 整体架构流程 整个实现的流…

2 接口测试实战演示

上一篇&#xff1a;1 接口测试介绍-CSDN博客 拿到开发提供的接口文档后&#xff0c;结合需求文档开始做接口测试用例设计&#xff0c;下面用最常见也最简单的注册功能介绍整个流程。 说明&#xff1a;以演示接口测试流程为主&#xff0c;不对演示功能做详细的测试&#xff0c;…

法语 Alt 代码表

法语的 Alt 代码表&#xff0c;请参考下图。 输入方法就是按住 Alt 键不松开&#xff0c;然后在小键盘上输入字符&#xff0c;松开 Al 键&#xff0c;计算机就能输出上面的字符了。 西班牙语 Alt 代码表 - 系统容器 - iSharkFly西班牙语 Alt 代码表&#xff0c;请参考下图。 输…

(第6天)RHEL 8 安装单机 Oracle 19C CDB 数据库

RHEL 8 安装单机 Oracle 19C 数据库(第6天) 随着 Oracle 版本的升级,硬件也在不断更新迭代,为了迎合这种趋势,Linux 系统也在不断升级,目前已经更新至 8 代版本。相信不久的将来,Linux 8 和 Oracle 19C 将成为主流版本,因此不得不讲 Linux 8 如何安装 Oracle 19C 数据…

javaWebssh汽车销售管理系统myeclipse开发mysql数据库MVC模式java编程计算机网页设计

一、源码特点 java ssh汽车销售管理系统是一套完善的web设计系统&#xff08;系统采用ssh框架进行设计开发&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用 B/S模式开发。开发环境为TOMCAT7.…

群晖(Synology)新建存储池使用 Home 服务

每一个用户都可以有一个自己的 Home 服务。 这个在群晖存储新建存储池后可以自动启用这个服务。 启用后&#xff0c;可以看到你的文件系统中有一个 homes 的文件了。 群晖&#xff08;Synology&#xff09;新建存储池使用 Home 服务 - 系统容器 - iSharkFly每一个用户都可以有…

ubuntu将本机的wifi网络通过网线分享给另一台机器(用于没有有线网络,重装系统后无wifi驱动或者另一台设备没有wifi网卡)

1.将两台机器通过网线连接 2.在pci ethernet中设置选择另一台机器的mac address&#xff0c;ipv4中选择share to other computer&#xff0c;另一台机器上设置为动态ip&#xff0c;连接上之后另一台机器即可上网。

分层解耦—三层架构

目录 三层架构 分层解耦 IOC&DI 三层架构 在进行程序设计以及程序开发时&#xff0c;尽可能让每一个接口、类、方法的职责更单一些&#xff08;单一职责原则&#xff09;。 单一职责原则&#xff1a;一个类或一个方法&#xff0c;就只做一件事情&#xff0c;只管一块功…

已解决:No goals have been specified for this build. You must specify a vali

[ERROR] No goals have been specified for this build. You must specify a valiTOC 完整报错 No goals have been specified for this build. You must specify a valid lifecycle phase or a goal in the format : or :[:]:. Available lifecycle phases are: pre-clean, c…

【IC前端虚拟项目】MVU模块方案与背景熟悉

【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 mvu这个模块是干嘛用的呢&#xff1f;从这个名字就可以看出来move_unit&#xff0c;应该是做数据搬运的。很多指令级中都会有数据搬运的指令&#xff0c;这类指令的作用一般是在片内片外缓存以及通用专用…

网络安全项目实战(三)--报文检测

6. TCP/IP协议栈及以太网帧 目标 了解TCP/IP协议栈的组织结构掌握以太网帧的数据格式定义能应用编码实现以太网帧的解析方法 6.1. TCP/IP 协议栈 TCP/IP网络协议栈分为应用层&#xff08;Application&#xff09;、传输层&#xff08;Transport&#xff09;、网络层&#xf…

使用Python监控服务器在线状态

前言 在公司内网有一台服务器&#xff0c;有动态的公网IP&#xff0c;使用DDNS对外提供服务&#xff0c;但是会因为停电、服务器卡死等原因导致服务器离线。服务器离线后无法及时获知&#xff0c;因此需要实现在服务器离线的时候能够发送消息到手机上。 思路梳理 公司办理的…

第31期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…

CSS特效029:超逼真的3D篮球弹跳,含挤压弹起模态

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花边是描述了一些CSS…