机器学习---Adaboost算法

news2025/1/5 9:07:27

1. Adaboost算法介绍

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然

后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。Adaboost算法本身是通

过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类

的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每

次得到的分类器最后融合起来,作为最后的决策分类器。

目前,对Adaboost算法的研究以及应用大多集中于分类问题,同时近年也出现了一些在回归问题

上的应用。就其应用adaboost系列主要解决了:两类问题、多类单标签问题、多类多标签问题、大

类单标签问题,回归问题。它用全部的训练样本进行学习。使用adaboost分类器可以排除一些不必

要的训练数据特征,并将关键放在关键的训练数据上面。

该算法其实是一个简单的弱分类算法提升过程,这个过程通过不断的训练,可以提高对数据的分类

能力。

①先通过对N个训练样本的学习得到第一个弱分类器;

②将分错的样本和其他的新数据一起构成一个新的N个的训练样本,通过对这个样本的学习得到第

二个弱分类器;

③将1和2都分错了的样本加上其他的新样本构成另一个新的N个的训练样本,通过对这个样本的学

习得到第三个弱分类器

④最终经过提升的强分类器。即某个数据被分为哪一类要通过......的多数表决。

对于boosting算法,存在两个问题:   

①如何调整训练集,使得在训练集上训练的弱分类器得以进行;   

②如何将训练得到的各个弱分类器联合起来形成强分类器。

针对以上两个问题,AdaBoost算法进行了调整:

①使用加权后选取的训练数据代替随机选取的训练样本,这样将训练的焦点集中在比较难分的训练

数据样本上;   

②将弱分类器联合起来,使用加权的投票机制代替平均投票机制。让分类效果好的弱分类器具有较

大的权重,而分类效果差的分类器具有较小的权重。 

与Boosting算法不同的是,AdaBoost算法不需要预先知道弱学习算法学习正确率的下限即弱分类

器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖

掘弱分类器算法的能力。 

AdaBoost算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应

的权重是相同的,即其中n为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样

本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突显出来,从

而得到一个新的样本分布。在新的样本分布下,再次对样本进行训练,得到弱分类器。依次类推,

经过T次循环,得到T个弱分类器,把这T个弱分类器按一定的权重叠加(boost)起来,得到最终

想要的强分类器。  

AdaBoost算法的具体步骤如下:   

①给定训练样本集S,其中X和Y分别对应于正例样本和负例样本;T为训练的最大循环次数;

②初始化样本权重为1/n ,即为训练样本的初始概率分布;   

③第一次迭代:(1)训练样本的概率分布相当,训练弱分类器;(2)计算弱分类器的错误率;(3)选取合

适阈值,使得误差最小;(4)更新样本权重;经T次循环后,得到T个弱分类器,按更新的权重叠

加,最终得到的强分类器。   

Adaboost算法是经过调整的Boosting算法,其能够对弱学习得到的弱分类器的错误进行适应性

(Adaptive)调整。上述算法中迭代了T次的主循环,每一次循环根据当前的权重分布对样本x定一个

分布P,然后对这个分布下的样本使用弱学习算法得到一个弱分类器,对于这个算法定义的弱学习

算法,对所有的样本都有错误率,而这个错误率的上限并不需要事先知道,实际上。每一次迭代,

都要对权重进行更新。更新的规则是:减小弱分类器分类效果较好的数据的概率,增大弱分类器分

类效果较差的数据的概率。最终的分类器是个弱分类器的加权平均。 

2. Adaboosting训练过程  

基于AdaBoost算法的强分类器训练

输入:(1)训练样本集

其中,y =-1,训练样本xi为负样本,y =+1,训练样本xi为正样本

(2)弱分类器的学习算法L

(3)弱分类器的数目M

输出:一个由M个弱分类器构成的强分类器

训练过程:

①初始化训练样本xi权重若正负样本数目一致,则

若正负样本数目分别为N+,N-,则

②for m=1,...,M

训练弱分类器估计弱分类器fm(x)的分类错误率em,如:

(3)估计弱分类器fm(x)的权重

(4)基于弱分类器fm(x)调整各样本权重,并归一化调整:

归一化:,强分类器

算法实现:

3. Adaboost算法例子

 

 

 

 

 

 

 

3. Adaboost算法计算案例

①初始化训练数据权重相等,训练第⼀个学习器。该假设每个训练样本在基分类器的学习中作用相

同,这⼀假设可以保证第⼀步能够在原始数据上学习基本分类器H1 (x)。

②AdaBoost反复学习基本分类器,在每⼀轮m = 1, 2, ..., M顺次的执⾏下列操作:

在权值分布为D的训练数据上,确定基分类器;

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:

将下⼀轮学习器的注意⼒集中在错误数据上,重复执⾏上述计算步骤m次;

③对m个学习器进⾏加权投票:

给定下⾯这张训练数据表所示的数据,假设弱分类器由xv产生,其阈值v使该分类器在训练数据集

上的分类误差率最低,试用Adaboost算法学习⼀个强分类器:

问题解答:

①初始化训练数据权重相等,训练第⼀个学习器:

②AdaBoost反复学习基本分类器,在每⼀轮m = 1, 2, ..., M顺次的执⾏下列操作:

当m=1的时候:在权值分布为D的训练数据上,阈值v取2.5时分类误差率最低,故基本分类器为:

(6,7,8被分错)

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:

根据下公式,计算各个权重值:

经计算得,D2的值为:

计算过程:

分类器H1(x)在训练数据集上有3个误分类点。

当m=2的时候:

在权值分布为D 的训练数据上,阈值v取8.5时分类误差率最低,故基本分类器为:

(3,4,5被分错)

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:经计算得,D 的值为:

分类器H2(x)在训练数据集上有3个误分类点。

当m=3的时候:

在权值分布为D 的训练数据上,阈值v取5.5时分类误差率最低,故基本分类器为:

计算该学习器在训练数据中的错误率:

计算该学习器的投票权重:

根据投票权重,对训练数据重新赋权:经计算得,D4的值为:

分类器H3(x)在训练数据集上的误分类点个数为0。

③对m个学习器进行加权投票,获取最终分类器:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305951.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

目标检测锚框

目标检测锚框 最开始呢,我们需要先介绍一下框,先学会一下怎么画框 导入所需要的包 from PIL import Image import d2lzh_pytorch as d2l import numpy as np import math import torch展示一下本次实验我们用到的图像,猫狗 d2l.set_figsiz…

基于ReentrantLock详解AQS源码

文章目录 一、公平锁实现FairSync:加锁:释放锁: 二、非公平锁实现NonfairSync:三、图解案例: AQS的全称是AbstractQueuedSynchronizer,它的定位是为Java中几乎所有的锁和同步器提供一个基础框架。AQS是基于…

怎么让gpt帮忙改文章 (1) 快码论文

大家好,今天来聊聊怎么让gpt帮忙改文章 (1),希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧: 怎么让GPT帮忙改文章 一、背景介绍 随着人工智能的发展,自然语言处理技术已经成为了许…

Mint Blockchain 2024 年发展路线图和开发计划

Mint Blockchain 是一个聚焦在 NFT 领域的 L2 网络,由 NFTScan Labs 和 MintCore 团队联合开发。今天这篇文章,我们主要为大家介绍 Mint 区块链在 2024 年的发展路线图以及开发计划。 Mint Blockchain 2024 Roadmap 2024 Q1 启动 MintPass 活动 2024 Q2…

GEE:使用网格搜索法(Grid Search)求机器学习的最优参数或者参数组合

作者:CSDN @ _养乐多_ 本文记录了在 Google Earth Engine(GEE)平台中,计算机器学习分类算法最优参数的代码,其中包括单一参数的最优和不同参数组合的最优。使用的最优参数计算方法是网格搜索法(Grid Search),GEE 平台上并没有现成的网格搜索法 API,因此,本文在 GEE …

MAC IDEA Maven Springboot

在mac中,使用idea进行maven项目构建 环境配置如何运行maven项目1.直接在IDEA中运行2.使用jar打包后执行 如何搭建spring boot1.添加依赖2.创建入口类3.创建控制器4. 运行5.其他 环境配置 官网安装IDEA使用IDEA的创建新项目选择创建MAEVEN项目测试IDEA的MAVEN路径是…

数据在网络中是怎么传输的?

计算机通信场景大致如下所示: 1.同一个子网中两台计算机通信 2.不属于同一个子网,两台计算机进行通信 以下内容,将围绕这两种场景进行阐述,在阐述之前,先举个场景示例,帮助大家理解一些名词 场景一&…

【Linux环境搭建】Ubuntu 22 安装 InfluxDB 1.8

这里写目录标题 一、下载安装二、启动 一、下载安装 查看安装包 apt-cache search influxdbwget -qO- https://repos.influxdata.com/influxdata-archive_compat.key | sudo apt-key add -source /etc/lsb-releaseecho "deb https://repos.influxdata.com/${DISTRIB_ID,…

华为OD机试真题B卷 Java 实现【统计大写字母个数】,附详细解题思路

一、题目描述 找出给定字符串中大写字符(即’A’-‘Z’)的个数。 数据范围:字符串长度:1≤∣s∣≤250 字符串中可能包含空格或其他字符 二、输入描述 对于每组样例,输入一行,代表待统计的字符串。 三、输出描述 输出一个整…

蓝牙在物联网中的应用,相比WIFI和NFC的优势?

蓝牙在物联网中有着广泛的应用,主要包括以下几个方面: 1、智能家居:蓝牙Mesh技术可以用于智能家居设备之间的连接和通信,实现设备的远程控制和管理。例如,通过蓝牙技术可以将智能音箱、智能电视、智能家电等设备连接起…

ue4 解决角度万向锁的问题 蓝图节点

问题:当角度值从359-1变化的时候,数值会经历358、357… 解决方法:勾上Shortest Path,角度值的会从359-1

智能优化算法应用:基于帝国主义竞争算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于帝国主义竞争算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于帝国主义竞争算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.帝国主义竞争算法4.实验参数设定…

Geotrust中的dv ssl证书

DV SSL数字证书是入门级的数字证书,Geotrust的子品牌RapidSSL旗下的SSL数字证书产品都是入门级的SSL数字证书——DV基础型单域名SSL证书和DV基础型通配符SSL证书。今天就随SSL盾小编了解Geotrust旗下的DV SSL证书。 1.Geotrust旗下的DV基础型单域名SSL证书能够保护…

阿里云服务器ECS安全组开启端口教程

阿里云服务器安全组开启端口教程 云服务器 ECS(Elastic Compute Service) 云服务器 ECS(Elastic Compute Service)是一种安全可靠、弹性可伸缩的云计算服务,助您降低 IT 成本,提升运维效率,使您…

[AutoSar]状态管理(二)单核 ECUM wakeup 流程——Can唤醒流程(TJA1043)

目录 关键词平台说明一 、前言二、wakeup2.1 wakeup source和Check-Wakeup Validation2.2Can唤醒流程(TJA1043)2.2.1 相关配置2.2.1.1 EcuM2.2.1.2 CanIF 2.2.2 序列图2.2.3流程和code 关键词 嵌入式、C语言、autosar、EcuM、wakeup、flex 平台说明 项…

配置android sudio出现的错误

导入demo工程,配置过程参考: AndroidStudio导入项目的正确方式,修改gradle配置 错误:Namespace not specified. Specify a namespace in the module’s build file. 并定位在下图位置: 原因:Android 大括号…

数据挖掘目标(Kaggle Titanic 生存测试)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns1.数据导入 In [2]: train_data pd.read_csv(r../老师文件/train.csv) test_data pd.read_csv(r../老师文件/test.csv) labels pd.read_csv(r../老师文件/label.csv)[Su…

OpenAI Q* (Q Star)简单介绍

一、Q Star 名称由来 Q* 的两个可能来源如下: 1)Q 可能是指 "Q-learning",这是一种用于强化学习的机器学习算法。 Q 名称的由来*:把 "Q*"想象成超级智能机器人的昵称。 Q 的意思是这个机器人非常善于做决定…

安装Anaconda和pytorch

首先看下自己电脑是否有英伟达的显卡,如果有的话可以安装GPU版本,没有的话可以安装CPU版本。 CPU版本 1.安装Anaconda 首先去官网下载Anaconda。 点击download,下载的就是最新版本的。 下载完成后,直接运行下步就行 注意到路径…

HTML---列表.表格.媒体元素

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.列表 无序列表 HTML中的无序列表&#xff08;Unordered List&#xff09;用于显示一组项目&#xff0c;每个项目之前没有特定的顺序或编号。无序列表使用<ul>标签来定义&#xff0c;每…