数据结构之优先级队列(堆)及top-k问题讲解

news2025/1/8 11:36:22

 💕"哪里会有人喜欢孤独,不过是不喜欢失望。"💕

作者:Mylvzi 

 文章主要内容:数据结构之优先级队列(堆) 

 

一.优先级队列

1.概念

  我们已经学习过队列,队列是一种先进先出(FIFO)的数据结构,但是在有些情况下,数据的进出是有优先级的,优先级高的往往需要先"出",优先级低的就需要后"出",此时普通的队列就无法完成这样的操作(也就是数据在插入到队列中后,还需要根据优先级进行位置调整),需要另外一种数据结构--优先级队列 PriorityQueue来实现

  在实际生活中PriorityQueue的场景经常存在,比如你在打游戏的时候,如果有来电,系统应该优先处理来电。

  在这种场景下,数据结构需要实现两个最基本的操作"返回优先级最高的对象"和"添加新的数据"

二.优先级队列的模拟实现

  jdk1.8中的PriorityQueue 底层就使用了"堆"这种数据结构,堆实际上就是经过优先级调整的完全二叉树

注:这里的优先级在堆中的体现一般是所存储数据的大小 

1.什么是堆?

  堆是一种把元素按大小排列的完全二叉树,堆就是进行数据高效组织的另一种形式

从小到大排列:小根堆(每棵树的根节点的值比当前树的所有孩子都小)

从大到小排列:大根堆(每棵树的根节点的值比当前树的所有孩子都大)

大根堆示例:

小根堆示例:
 

2.堆的存储方式

  堆其实是一颗完全二叉树,那么在存储的时候就可以使用顺序表进行数据的存储;而对于非完全二叉树来说,则不适合使用顺序表存储数据,因为会导致空间资源的浪费

  既然是一颗完全二叉树,那就具有完全二叉树的一些性质

  • 如果i为0,则i对应的结点是根节点;i的父节点的下标为(i-1)/2
  • 由父节点的下标i可得左孩子的下标:2*i+1,右孩子的下标:2*i+2

3.堆的创建

一般都是根据数组去创建堆  使数组中的元素在二叉树中排列时呈现某种顺序

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

观察集合,此时是无序的,我们需要通过调整将其设置为大根堆/小根堆

1.堆的实现

1.大根堆的实现

图解:

可见实现大根堆的核心思路在于"向下调整",对已有的数据进行向下调整,使其符合规定的顺序

向下调整的步骤:

  1.  先获取到最后一棵子树的根节点的下标 parent = (usedSize - 1- 1)/2
  2. 获取到左右孩子结点的最大值(先获取左孩子,再判断左右孩子谁的值更大)
  3. 如果孩子节点的值>根节点的值,交换,交换之后需要堆parent重新赋值为child,继续向下调整
  4. 如果孩子节点的值<根节点的值,不交换,parent--;

对于2:为什么先获取左孩子的结点呢?因为对于一个完全二叉树来说,其最后一棵子树一定有左孩子,但是不一定有右孩子。

代码实现 

    // 根据传入的数组  将他们调整为大根堆

    public int[] elem;
    public int usedSize;

    public TestHeap(int size) {
        this.elem = new int[size];
    }

    // 初始化堆
    public void initHeap(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
            this.elem[i] = arr[i];
            this.usedSize++;
        }


    }

    // 实现大根堆

    /**
     * 从最后一棵子树的根节点开始,进行向下调整,一直调整到root
     */
        // 向下调整
    public void createHeap() {
        // 从最后一棵子树的根节点开始
        for (int parents = (usedSize-1-1)/2; parents >= 0; parents--) {
            shiftDown(parents,usedSize);
        }
        
    }

    private void shiftDown(int parents, int usedSize) {
        // 先获取左孩子的下标
        int child = 2*parents + 1;
        
        // 进行向下调整
        while (child < usedSize) {
            // 先判断左右孩子的值是谁更大
            if(child+1 < usedSize && elem[child] < elem[child+1]) {
                // 存在右孩子  且右孩子的值比左孩子的大
                child++;
            }
            
            if(elem[child] > elem[parents]) {
                // 如果孩子结点的值比根节点大  交换
                swap(child,parents);
                parents = child;
                child = 2*parents + 1;
            }else {
                // 如果根节点就是最大值  直接翻一下
                break;
            }
        }
    }

    // 交换函数
    private void swap(int i, int j) {
        int tmp = elem[i];
        elem[i] = elem[j];
        elem[j] = tmp;
    }
2.小根堆的实现

实现小根堆的逻辑是相同的,只需要在进行向下调整的时候改一下交换的逻辑

    // 实现小根堆
    public void createHeap2() {
        // 从最后一棵子树的根节点开始
        for (int parents = (usedSize-1-1)/2; parents >= 0; parents--) {
            shiftDown(parents,usedSize);
        }

    }

    private void shiftDown2(int parents, int usedSize) {
        // 先获取左孩子的下标
        int child = 2*parents + 1;

        // 进行向下调整
        while (child < usedSize) {
            // 先判断左右孩子的值是谁更大
            if(child+1 < usedSize && elem[child] > elem[child+1]) {
                // 存在右孩子  且右孩子的值比左孩子的小
                child++;
            }

            if(elem[child] < elem[parents]) {
                // 如果孩子结点的值比根节点小  交换
                swap(child,parents);

                // parent中大的元素向下移动  可能会造成子树不满足堆的性质  继续进行向下调整
                parents = child;
                child = 2*parents + 1;
            }else {
                // 如果根节点就是最大值  
                break;
            }
        }
    }

向下调整的时间复杂度:
   最坏的情况就是从根节点一直比到叶子节点,比较的次数就是完全二叉树的高度,O(logn)

其他情况比较的次数都是常数次,对于时间复杂度来说,一般只考虑最坏情况

2.堆的创建

  在向下调整的代码中我们已经实现了堆的创建

    // 堆的创建
    public void createHeap() {
        // 从最后一棵子树的根节点开始
        for (int parents = (usedSize-1-1)/2; parents >= 0; parents--) {
            shiftDown(parents,usedSize);
        }
    }

向下调整的时间复杂度是 O(logn),那"建堆"的时间复杂度是多少呢?请看下面的推导

 

注:
1.堆建立的时间复杂度需要考虑两方面,每层的结点数,以及每个结点向下调整的最坏情况

2.堆的时间复杂度的推导需要使用到数列中常见的一种方法"错位相减"

3.堆的时间复杂度一定要回手写推导,面试中有可能会考到!!!

3.在堆中添加元素

  要求:添加之后仍满足大根堆的形式

说明:

  1. 在堆中插入一个新的元素之后,需要仍保持堆的性质,此时需要进行向上调整,直到调整到合适的位置;
  2. 由于堆的存储结构是一个顺序表,所以当顺序表满时,需要进行扩容 ;同时,堆的插入对应的就是顺序表的尾插

代码实现:

// 在堆内添加元素
    /**
     * 插入到最后一个位置(保证是一个完全二叉树,且方便后续操作)
     * 向上调整
     */

    public void offer(int val) {
        if (isFull()) {
            this.elem = Arrays.copyOf(this.elem,2*this.elem.length);
        }

        this.elem[usedSize] = val;
        shiftUp(usedSize);
        this.usedSize++;
    }

    private void shiftUp(int child) {
        int parent = (child-1)/2;
        
        // == 0此时就是根节点了  不需要再去向上调整
        // 需要一直调整到根节点
        while(child != 0) {
            if(elem[child] > elem[parent]) {
                swap(child,parent);
                child = parent;
                parent = (child-1)/2;
            }else {
                break;
            }
        }
    }

    private boolean isFull() {
        return this.usedSize == this.elem.length;
    }

4.删除优先级最高的元素(数组的首元素)

  堆的删除对应队列的"出队"操作,只不过堆的删除出的是优先级最高的元素

  对于堆来说,优先级最高的元素位于堆顶,也就是顺序表的首元素,那如何进行堆的删除操作呢?

  最直观的想法就是先保存堆顶元素,然后挪动堆顶元素之后的所有元素,使其都向前挪动一个位置,再对挪动之后的结果重新进行向下调整。这种方法实际上是可行的,但是时间复杂度过高,效率较低,这种方法的时间复杂度是挪动数据的时间复杂度O(n)与向下调整的时间复杂度O(logN)之和

  当然还有另一种效率更高的实现方法,先交换堆顶和堆尾的元素,再进行向下调整,此方法的时间复杂度是交换的时间复杂度O(1)与向下调整的时间复杂度O(logN),效率明显比大量挪动数据更高

代码实现:

// 删除  一定是删除优先级最高的元素  最后返回优先级最高的那个元素
    public int poll() {
        // 优先级最高的元素就是顺序表elem 的首元素
        int tmp = elem[0];
        swap(0,usedSize-1);
        this.usedSize--;
        
        // 只需对堆顶元素进行向下调整
        shiftDown(0,usedSize);
        
        return tmp;
    }

注:

  交换堆顶和堆尾元素这一操作还有另一考量,因为堆尾元素一定是优先级最低的元素,出队一定是最后一个进行出队,交换之后,堆顶是优先级最低的元素,就保证了其余元素都是优先级比堆顶元素更高,此时只需对堆顶元素进行向下调整即可,而不是从最后一棵子树的根节点开始进行调整

总结:删除堆中元素的三步骤

  1. 交换堆顶和堆中最后一个元素
  2. 删除最后一个元素
  3. 将堆顶元素进行向下调整

三.常用接口介绍

1.PriorityQueue的特性

  Java的集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,此处主要介绍PriorityQueue

使用PriorityQueue的注意事项

  1. 需要导包,即:import java.util.PriorityQueue;
  2. PriorityQueue中存放的数据必须能够进行大小的比较,不能够插入无法比较的对象,否则会报错
            PriorityQueue<Integer> priorityQueue1 = new PriorityQueue<>();
            priorityQueue1.offer(1);
            priorityQueue1.offer(2);
    
            PriorityQueue<Student> priorityQueue2 = new PriorityQueue<>();
            priorityQueue2.offer(new Student());
            priorityQueue2.offer(new Student());// 报错  

3.不能插入null,否则会报空指针异常

4.插入(向上调整)和删除的操作的时间复杂度都是O(logN)

5. PriorityQueue默认是小根堆,也就是根节点的值比子节点的值小

 

        PriorityQueue<Integer> priorityQueue1 = new PriorityQueue<>();
        priorityQueue1.offer(1);
        priorityQueue1.offer(2);
        priorityQueue1.offer(3);
        priorityQueue1.offer(4);
        priorityQueue1.offer(5);

        System.out.println(priorityQueue1.poll());// 输出1

2. PriorityQueue常用接口介绍

1.构造方法

1.1不含参的构造方法
    // 不含参的构造方法
    public PriorityQueue() {
        this(DEFAULT_INITIAL_CAPACITY, null);
    }
    // 默认容量是11
    private static final int DEFAULT_INITIAL_CAPACITY = 11;
1.2 指定容量的构造方法
    // 指定容量的构造方法
    public PriorityQueue(int initialCapacity) {
        this(initialCapacity, null);
    }
1.3指定容量  并接受比较器的构造方法(最核心的一个构造方法)
    // 指定容量  并接受比较器的构造方法
    public PriorityQueue(int initialCapacity,
                         Comparator<? super E> comparator) {
        // Note: This restriction of at least one is not actually needed,
        // but continues for 1.5 compatibility
        
        // 如果初始容量<1  就抛出异常  但实际上源码中也说了  <1这个条件并不是必需的  只不过是为了和1.5保持一致设置的条件
        if (initialCapacity < 1)
            throw new IllegalArgumentException();
        this.queue = new Object[initialCapacity];
        this.comparator = comparator;
    }
 1.4利用其他集合创建一个优先级队列

只要实现了Collection的集合都能作为参数参与创建一个优先级队列

PriorityQueue(Collection<? extends E> c)  用一个集合来创建优先级队列

        List<Integer> list = new ArrayList<>();
        list.add(1);
        list.add(12);
        list.add(13);

        PriorityQueue<Integer> priorityQueue =
                new PriorityQueue<>(list);
        System.out.println(priorityQueue.toString());// 输出1 12 13

2.PriorityQueue的扩容机制

PriorityQueue的存储结构是顺序表,在不断添加数据的时候涉及到扩容问题,下面来研究一下PriorityQueue中是如何进行扩容的

先来看offer对应的源码

    public boolean offer(E e) {
        
        // 为空 直接抛出异常  不能插入空指针
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        
        // 进行扩容
        if (i >= queue.length)
            // grow方法内部是扩容的机制
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else  // 向上调整
            siftUp(i, e);
        return true;
    }

接下来看grow方法的实现 



3.如何实现大根堆

PriorityQueue默认是小根堆,想要实现大根堆则需要重新构建比较逻辑,使用Comparator接口,下面以整数的比较为例实现大根堆

1.方法一:直接构造一个比较器
        // 构造比较器 实现大根堆
        class IntCmp implements Comparator<Integer> {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2.compareTo(o1);
            }
        }

        PriorityQueue<Integer> priorityQueue =
                new PriorityQueue<>(new IntCmp());
        priorityQueue.offer(1);
        priorityQueue.offer(2);
        priorityQueue.offer(33);
        priorityQueue.offer(44);
        priorityQueue.offer(55);

        System.out.println(priorityQueue.poll());// 输出55
2.方法二:使用匿名内部类
        // 使用匿名内部类
        PriorityQueue<Integer> priorityQueue =
                new PriorityQueue<>(new Comparator<Integer>() {
                    @Override
                    public int compare(Integer o1, Integer o2) {
                        return o2.compareTo(o1);
                    }
                });

        priorityQueue.offer(1);
        priorityQueue.offer(2);
        priorityQueue.offer(33);
        priorityQueue.offer(44);
        priorityQueue.offer(55);

        System.out.println(priorityQueue.poll());// 输出55
3.方法三:使用lambda表达式(推荐) 
        // 使用lambda表达式
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(
                (o1,o2) ->{return o2.compareTo(o1);}
        );

        priorityQueue.offer(1);
        priorityQueue.offer(2);
        priorityQueue.offer(33);
        priorityQueue.offer(44);
        priorityQueue.offer(55);

        System.out.println(priorityQueue.poll());// 输出55

四.重点:top-k问题的三种解决方法

https://leetcode.cn/problems/smallest-k-lcci/description/

1.最简单的思路:对数组进行排序

// 解法1
    public int[] smallestK1(int[] arr, int k) {
        int[] ret = new int[k];
        if(arr == null || k <= 0) return ret;

        Arrays.sort(arr);

        // 排序之后  arr从小到大排列完毕
        for (int i = 0; i < k; i++) {
            ret[i] = arr[i];
        }

        return ret;
    }

 

2.直接使用堆(优先级队列)的特性  创建小根堆  poll k次即可

// 解法2
    public int[] smallestK2(int[] arr, int k) {
        int[] ret = new int[k];
        if(arr == null || k <= 0) return ret;

        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();

        for (int i = 0; i < arr.length; i++) {
            priorityQueue.offer(arr[i]);
        }

        for (int i = 0; i < k; i++) {
            ret[i] = priorityQueue.poll();
        }


        return ret;
    }

3.建立一个k个结点的大根堆  再与数组剩余元素进行比较(重点掌握)

步骤:

  1. 先将前k个元素创建为大根堆(k 是因为我最后要返回k个元素)
  2. 将数组中剩余的元素依次去和堆顶元素进行比较,如果小于堆顶元素,插入堆中
  3. 返回容量为k的大根堆

// 解法3  效率最高的一种方法  创建一个具有k个结点的大根堆
    
    // 注意  优先级队列默认是小根堆  要实现大根堆  需要先创建一个实现了Comparator接口的对象
    class IntCmp implements Comparator<Integer> {

        @Override
        public int compare(Integer o1, Integer o2) {
            return o2.compareTo(o1);
        }
    }
    public int[] smallestK(int[] arr, int k) {
        int[] ret = new int[k];
        if(arr == null || k <= 0) return ret;

        // 创建一个具有k个结点的大根堆
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(new IntCmp());

        for (int i = 0; i < k; i++) {
            // 将前k个元素做成大根堆
            priorityQueue.offer(arr[i]);
        }

        for (int i = k; i < arr.length; i++) {
            // 去和栈顶元素比较
            if (arr[i] < priorityQueue.peek()) {
                // 证明栈顶元素不是前k个最小的元素  要删除
                priorityQueue.poll();
                priorityQueue.offer(arr[i]);
            }
        }

        for (int i = 0; i < k; i++) {
            ret[i] = priorityQueue.poll();
        }

        return ret;
    }

 时间复杂度分析:

前两种方法对于数据量特别大的情况十分不友好!占用的内存太大 

变式:

求数组中第k大/小元素
// 求数组中第k大/小元素

    //  前k个元素存储到小根堆中  堆里存放最大的k个元素 以小根堆的形式存储  则堆头一定是第k大的元素
    public int maxKestK(int[] arr, int k) {
        if(arr == null || k <= 0) {
            throw new ArrayEmptyException("不含有元素或k不合法");
        }

        // 创建一个具有k个结点的大根堆
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();

        for (int i = 0; i < k; i++) {
            // 将前k个元素做成小根堆
            priorityQueue.offer(arr[i]);
        }

        for (int i = k; i < arr.length; i++) {
            if (arr[i] > priorityQueue.peek()) {
                priorityQueue.poll();
                priorityQueue.offer(arr[i]);
            }
        }

        return priorityQueue.poll();

    }

五.堆排

  堆排序即利用堆的思想进行排序,堆排序的过程可以分为两步

  1. 确定排序方式:升序--建立大根堆  降序--建立小根堆
  2. 利用堆删除的思想(向下调整进行堆排)

图解:

代码实现

    // 堆排序
    // 升序  从小到大  创建大根堆
    // 降序  从大到小  创建小根堆

    /**
     * 升序  调整为大根堆  堆首元素一定是最大的
     * 交换堆首和堆尾元素  向下调整(不包含被调下去的最大元素)  使第二大的元素位于堆顶
     * 重复上述操作  每次都是堆首元素和堆尾元素进行交换
     */

    public void headSort() {
        int end = usedSize-1;
        while(end > 0) {
            swap(0,end);
            shiftDown(0,end);
            end--;
        }
    }

    private void shiftDown(int parent, int usedSize) {
        int child = 2 * parent+1;// 得到左孩子的下标
        while (child < usedSize) {
            // 首先要保证child是左右孩子最大元素的下标
            if(child + 1 < usedSize && elem[child] < elem[child+1]) {
                // 有右孩子  且右孩子的值比左孩子大
                child++;
            }

            // 此时child就是值最大孩子的下标
            if(elem[child] > elem[parent]) {
                swap(child,parent);
                parent = child;
                child = 2 * parent+1;
            }else {
                break;
            }
        }
    }

总结:

堆排时要选择好排序的顺序,如果是升序排序就创建大根堆,如果是降序排序就是用小根堆

以升序排序为例,创建一个大根堆存储数据,再不断交换堆顶和堆尾元素(此时一定是最大元素放到堆尾,最小元素放到堆顶),再进行向下调整,向下调整的数据范围并不报错刚刚被挪动到堆尾的元素,使整个堆仍然保持大根堆的性质,这样最大的元素就被移动到最后,依次操作,每次都可以把当前数据范围内的最大元素移动到最后,最后创建出的堆中存储的数据就是升序排序的

这种"逆向思维"在堆中很常见,想让堆顶是最小的元素,就先创建大根堆,再不断地挪动数据,向下调整

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305879.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flask维护者:李辉

Flask维护者&#xff1a;李辉&#xff0c; 最近看b站的flask相关&#xff0c;发现了这个视频&#xff1a;[PyCon China 2023] 濒危 Flask 扩展拯救计划 - 李辉_哔哩哔哩_bilibili 李辉讲他在维护flask之余&#xff0c;开发了apiflask这个依托flask的框架。GitHub - apiflask/a…

电商淘宝爬虫API与淘宝官方开放平台API的区别以及如何选择适合自己的API接口

随着数字化时代的到来&#xff0c;数据已经成为企业竞争力的重要因素。为了获取数据&#xff0c;企业或个人常常需要使用API接口。常见的API接口包括爬虫API和官方开放平台API。本文将详细介绍这两种API接口的区别以及如何选择适合自己的API接口。 一、爬虫API与官方开放平台A…

Docker部署Nacos集群并用nginx反向代理负载均衡

首先找到Nacos官网给的Github仓库&#xff0c;里面有docker compose可以快速启动Nacos集群。 文章目录 一. 脚本概况二. 自定义修改1. example/cluster-hostname.yaml2. example/.env3. env/mysql.env4. env/nacos-hostname.env 三、运行四、nginx反向代理&#xff0c;负载均衡…

1844_高边驱动以及低边驱动的选择

Grey 全部学习内容汇总&#xff1a;GitHub - GreyZhang/g_hardware_basic: You should learn some hardware design knowledge in case hardware engineer would ask you to prove your software is right when their hardware design is wrong! 1844_高边驱动以及低边驱动的…

HarmonyOS鸿蒙应用开发——数据持久化Preferences

文章目录 数据持久化简述基本使用与封装测试用例参考 数据持久化简述 数据持久化就是将内存数据通过文件或者数据库的方式保存到设备中。HarmonyOS提供两两种持久化方案&#xff1a; Preferences&#xff1a;主要用于保存一些配置信息&#xff0c;是通过文本的形式存储的&…

装饰模式-设计模式

装饰模式 1.动机 一般有两种方式可以实现给一个类或对象增加行为&#xff1a; 继承机制&#xff0c;使用继承机制是给现有类添加功能的一种有效途径&#xff0c;通过继承一个现有类可以使得子类在拥有自身方法的同时还拥有父类的方法。但是这种方法是静态的&#xff0c;用户不…

【Flink系列七】TableAPI和FlinkSQL初体验

Apache Flink 有两种关系型 API 来做流批统一处理&#xff1a;Table API 和 SQL Table API 是用于 Scala 和 Java 语言的查询API&#xff0c;它可以用一种非常直观的方式来组合使用选取、过滤、join 等关系型算子。 Flink SQL 是基于 Apache Calcite 来实现的标准 SQL。无论输…

C++ 11 异常

在C语言中&#xff0c;我们也有不少处理错误的方式&#xff0c;但是我们将这些处理错误的方式带到C 中&#xff0c;随着C不断更新的语法规则和内容下&#xff0c;这些C语言的处理方式还够用吗&#xff1f; 一.C语言的错误处理方式 C语言处理错误的方式大概有两种&#xff1a; …

环境安全之配置管理及配置安全设置指导

一、前言 IT运维过程中&#xff0c;配置的变更和管理是一件非常重要且必要的事&#xff0c;除了一般宏观层面的配置管理&#xff0c;还有应用配置参数的配置优化&#xff0c;本文手机整理常用应用组件配置项配置&#xff0c;尤其安全层面&#xff0c;以提供安全加固指导实践。…

mysqlclient安装失败

错误代码如下: 原因&#xff1a;缺少依赖项 从您所提供的错误日志中可以看出&#xff0c;尝试安装mysqlclient时出现了问题。错误的核心部分是&#xff1a; Can not find valid pkg-config name. Specify MYSQLCLIENT_CFLAGS and MYSQLCLIENT_LDFLAGS env vars manually 这表…

高通平台开发系列讲解(USB篇)MBIM协议详解

文章目录 一、MBIM协议二、MBIM 消息类型三、基本控制消息构成3.1、MBIM OPEN MSG FORMAT3.2、MBIM CLOSE MSG FORMAT3.3、MBIM_COMMAND_MSG3.4、MBIM_COMMAND_DONE3.5、MBIM_INDICATE_STATUS_MSG四、MBIM Message(UUID+CID)4.1、UUID_BASIC_CONNECT

redis的深度理解

上篇博客我们说到了redis的基本概念和基本操作&#xff0c;本篇我们就更深入去了解一些redis的操作和概念&#xff0c;我们就从red的主从同步、redis哨兵模式和redis集群三个方面来了解redis数据库 一、主从同步 像MySQL一样&#xff0c;redis是支持主从同步的&#xff0c;而…

12月12日作业

设计一个闹钟 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimerEvent> #include <QTime> #include <QTime> #include <QTextToSpeech>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass …

【深度学习】强化学习(六)基于值函数的学习方法

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略&#xff08;Policy&#xff09;4、马尔可夫决策过程5、强化学习的目标函数6、值函数7、深度强化学习 二、基于值函数的学习方法 一、强化学习问题 强化学习的基本任务是通过智能体与环境的交互学习一个策略…

GeMap:Online Vectorized HD Map Construction using Geometry

参考代码&#xff1a;GeMap 动机与出发点 出了原本针对单点的L1损失&#xff0c;车道线具备的几何结构信息作为监督信息也可以再被挖掘挖掘&#xff0c;像车道线实例中点和点之间的距离与夹角、线与线之间的夹角、不同线上点与点之间的关系都可用来作为监督约束&#xff0c;但…

Redis - RDB与AOF持久化技术

Redis 持久化技术 RDB 是默认持久化方式&#xff0c;但 Redis 允许 RDB 与 AOF 两种持久化技术同时 开启&#xff0c;此时系统会使用 AOF 方式做持久化&#xff0c;即 AOF 持久化技术的优先级要更高。同样的道 理&#xff0c;两种技术同时开启状态下&#xff0c;系…

字符设备驱动开发基础

一. 简介 本文简单了解一下&#xff0c;在字符设备驱动开发开始前对其一些基本认识。简单了解一下&#xff0c;应用程序与驱动的交互原理&#xff0c;以及字符设备驱动开发流程。 二. 字符设备驱动开发流程 1. 在 Linux 中一切皆为文件&#xff0c;驱动加载成功以后会在“…

【教程】制作 iOS 推送证书

​ 目录 证书类型 MAC Key Store 消息推送控制台 制作证书 创建苹果 App ID 使用appuploder制作 .p12文件 创建证书 如需向 iOS 设备推送数据&#xff0c;您首先需要在消息推送控制台上配置 iOS 推送证书。iOS 推送证书用于推送通知&#xff0c;本文将介绍消息推送服务支…

K8S(二)—介绍

K8S的整体结构图 k8s对象 在 Kubernetes 系统中&#xff0c;Kubernetes 对象是持久化的实体。 Kubernetes 使用这些实体去表示整个集群的状态。 具体而言&#xff0c;它们描述了如下信息&#xff1a; 哪些容器化应用正在运行&#xff08;以及在哪些节点上运行&#xff09;可…

【Java 进阶篇】Jedis 操作 Hash:Redis中的散列类型

在Redis中&#xff0c;Hash是一种存储键值对的数据结构&#xff0c;它适用于存储对象的多个属性。Jedis作为Java开发者与Redis交互的工具&#xff0c;提供了丰富的API来操作Hash类型。本文将深入介绍Jedis如何操作Redis中的Hash类型数据&#xff0c;通过生动的代码示例和详细的…