【计算机网络基础3】ARP/RARP协议、路由选择协议和TCP/IP协议

news2024/10/6 12:00:22

1、ARP/RARP协议

地址解析协议,即ARP(Address Resolution Protocol),是根据IP地址获取物理地址的一个TCP/IP协议。主机发送信息时将包含目标IP地址的ARP请求广播到网络上的所有主机,并接收返回消息,以此确定目标的物理地址;收到返回消息后将该IP地址和物理地址存入本机ARP缓存中并保留一定时间,下次请求时直接查询ARP缓存以节约资源。地址解析协议是建立在网络中各个主机互相信任的基础上的,网络上的主机可以自主发送ARP应答消息,其他主机收到应答报文时不会检测该报文的真实性就会将其记入本机ARP缓存;由此攻击者就可以向某一主机发送伪ARP应答报文,使其发送的信息无法到达预期的主机或到达错误的主机,这就构成了一个ARP欺骗。ARP命令可用于查询本机ARP缓存中IP地址和MAC地址的对应关系、添加或删除静态对应关系等。

ARP工作流程举例:

主机A的IP地址为192.168.1.1,MAC地址为0A-11-22-33-44-01;

主机B的IP地址为192.168.1.2,MAC地址为0A-11-22-33-44-02;

当主机A要与主机B通信时,地址解析协议可以将主机B的IP地址(192.168.1.2)解析成主机B的MAC地址,以下为工作流程:

  1. 根据主机A上的路由表内容,IP确定用于访问主机B的转发IP地址是192.168.1.2。然后A主机在自己的本地ARP缓存中检查主机B的匹配MAC地址。
  2. 如果主机A在ARP缓存中没有找到映射,它将询问192.168.1.2的硬件地址,从而将ARP请求帧广播到本地网络上的所有主机。源主机A的IP地址和MAC地址都包括在ARP请求中。本地网络上的每台主机都接收到ARP请求并且检查是否与自己的IP地址匹配。如果主机发现请求的IP地址与自己的IP地址不匹配,它将丢弃ARP请求。
  3. 主机B确定ARP请求中的IP地址与自己的IP地址匹配,则将主机A的IP地址和MAC地址映射添加到本地ARP缓存中。
  4. 主机B将包含其MAC地址的ARP回复消息直接发送回主机A。
  5. 当主机A收到从主机B发来的ARP回复消息时,会用主机B的IP和MAC地址映射更新ARP缓存。本机缓存是有生存期的,生存期结束后,将再次重复上面的过程。主机B的MAC地址一旦确定,主机A就能向主机B发送IP通信了。

逆地址解析协议,即RARP,功能和ARP协议相对,其将局域网中某个主机的物理地址转换为IP地址

比如局域网中有一台主机只知道物理地址而不知道IP地址,那么可以通过RARP协议发出征求自身IP地址的广播请求,然后由RARP服务器负责回答。

RARP协议工作流程:

  1. 给主机发送一个本地的RARP广播,在此广播包中,声明自己的MAC地址并且请求任何收到此请求的RARP服务器分配一个IP地址;
  2. 本地网段上的RARP服务器收到此请求后,检查其RARP列表,查找该MAC地址对应的IP地址;
  3. 如果存在,RARP服务器就给源主机发送一个响应数据包并将此IP地址提供给对方主机使用;
  4. 如果不存在,RARP服务器对此不做任何的响应;

2、路由选择协议

常见的路由选择协议有:RIP协议、OSPF协议。

RIP协议 :底层是贝尔曼福特算法,它选择路由的度量标准(metric)是跳数,最大跳数是15跳,如果大于15跳,它就会丢弃数据包。

OSPF协议 :Open Shortest Path First开放式最短路径优先,底层是迪杰斯特拉算法,是链路状态路由选择协议,它选择路由的度量标准是带宽,延迟。

3、TCP/IP协议

TCP/IP协议是Internet最基本的协议、Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP协议组成。通俗而言:TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台联网设备规定一个地址。

IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层—TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是否按顺序发送的或者有没有被破坏,IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。

TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP是面向连接的所以只能用于端到端的通讯。TCP提供的是一种可靠的数据流服务,采用"带重传的肯定确认"技术来实现传输的可靠性。TCP还采用一种称为"滑动窗口"的方式进行流量控制,所谓窗口实际表示接收能力,用以限制发送方的发送速度。

TCP报文首部格式:
在这里插入图片描述
TCP协议的三次握手和四次挥手:
在这里插入图片描述
注:seq:"sequance"序列号;ack:"acknowledge"确认号;SYN:"synchronize"请求同步标志;;ACK:“acknowledge"确认标志”;FIN:"Finally"结束标志。

TCP连接建立过程: 首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资源。Client端接收到ACK报文后也向Server段发生ACK报文,并分配资源,这样TCP连接就建立了。

TCP连接断开过程: 假设Client端发起中断连接请求,也就是发送FIN报文。Server端接到FIN报文后,意思是说"我Client端没有数据要发给你了",但是如果你还有数据没有发送完成,则不必急着关闭Socket,可以继续发送数据。所以你先发送ACK,“告诉Client端,你的请求我收到了,但是我还没准备好,请继续你等我的消息”。这个时候Client端就进入FIN_WAIT状态,继续等待Server端的FIN报文。当Server端确定数据已发送完成,则向Client端发送FIN报文,“告诉Client端,好了,我这边数据发完了,准备好关闭连接了”。Client端收到FIN报文后,“就知道可以关闭连接了,但是他还是不相信网络,怕Server端不知道要关闭,所以发送ACK后进入TIME_WAIT状态,如果Server端没有收到ACK则可以重传。”,Server端收到ACK后,“就知道可以断开连接了”。Client端等待了2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,我Client端也可以关闭连接了。Ok,TCP连接就这样关闭了!

为什么要三次握手?

在只有两次"握手"的情形下,假设Client想跟Server建立连接,但是却因为中途连接请求的数据报丢失了,故Client端不得不重新发送一遍;这个时候Server端仅收到一个连接请求,因此可以正常的建立连接。但是,有时候Client端重新发送请求不是因为数据报丢失了,而是有可能数据传输过程因为网络并发量很大在某结点被阻塞了,这种情形下Server端将先后收到2次请求,并持续等待两个Client请求向他发送数据…问题就在这里,Cient端实际上只有一次请求,而Server端却有2个响应,极端的情况可能由于Client端多次重新发送请求数据而导致Server端最后建立了N多个响应在等待,因而造成极大的资源浪费!所以,"三次握手"很有必要!

为什么要四次挥手?

试想一下,假如现在你是客户端你想断开跟Server的所有连接该怎么做?第一步,你自己先停止向Server端发送数据,并等待Server的回复。但事情还没有完,虽然你自身不往Server发送数据了,但是因为你们之前已经建立好平等的连接了,所以此时他也有主动权向你发送数据;故Server端还得终止主动向你发送数据,并等待你的确认。其实,说白了就是保证双方的一个合约的完整执行!

使用TCP的协议: FTP(文件传输协议)、Telnet(远程登录协议)、SMTP(简单邮件传输协议)、POP3(和SMTP相对,用于接收邮件)、HTTP协议等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTTP深度解析:构建高效与安全网络的关键知识

1. HTTP基础及其组件 我首先想和大家分享的是HTTP的基础知识。HTTP,即超文本传输协议,是互联网上最常用的协议之一。它定义了浏览器和服务器之间数据交换的规则,使得网页内容可以从服务器传输到我们的浏览器上。想象一下,每当你点…

kafka配置多个消费者groupid kafka多个消费者消费同一个partition(java)

目录 1- 单播模式,只有一个消费者组2- 广播模式,多个消费者组3- Java实践 kafka是由Apache软件基金会开发的一个开源流处理平台。kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 kafka中partition…

Linux实用操作(超级实用)

Linux实用操作篇-上篇:Linux实用操作-上篇-CSDN博客 Linux实用操作篇-下篇:Linux实用操作篇-下篇-CSDN博客 一、各类小技巧(快捷键) 1.1 ctrl c 强制停止 Linux某些程序的运行,如果想要强制停止它,可以…

Redis缓存异常问题,常用解决方案总结

前言 Redis缓存异常问题分别是:1.缓存雪崩。2.缓存预热。3.缓存穿透。4.缓存降级。5.缓存击穿,以 及对应Redis缓存异常问题解决方案。 1.缓存雪崩 1.1、什么是缓存雪崩 如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有…

【MySQL】MySQL数据库基础--什么是数据库/基本使用/MySQL架构/存储引擎

文章目录 1.什么是数据库2.主流数据库3.基本使用3.1MySQL安装3.2连接服务器3.3服务器管理3.4服务器,数据库,表关系3.5使用案例3.6数据逻辑存储 4.MySQL架构5.SQL分类6.存储引擎6.1什么是存储引擎6.2查看存储引擎6.3存储引擎对比 1.什么是数据库 对于回答…

MySQL笔记-第18章_MySQL8其它新特性

视频链接:【MySQL数据库入门到大牛,mysql安装到优化,百科全书级,全网天花板】 文章目录 第18章_MySQL8其它新特性1. MySQL8新特性概述1.1 MySQL8.0 新增特性1.2 MySQL8.0移除的旧特性 2. 新特性1:窗口函数2.1 使用窗口…

【LeetCode刷题-树】--144.二叉树的前序遍历

144.二叉树的前序遍历 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) …

『npm』一条命令快速配置npm淘宝国内镜像

📣读完这篇文章里你能收获到 一条命令快速切换至淘宝镜像恢复官方镜像 文章目录 一、设置淘宝镜像源二、恢复官方镜像源三、查看当前使用的镜像 一、设置淘宝镜像源 npm config set registry https://registry.npm.taobao.org服务器建议全局设置 sudo npm config…

HarmonyOS使用Tabs组件实现页面切换

Tabs组件的使用 概述 在我们常用的应用中,经常会有视图内容切换的场景,来展示更加丰富的内容。比如下面这个页面,点击底部的页签的选项,可以实现“首页”和“我的” 两个内容视图的切换。 ArkUI开发框架提供了一种页签容器组件…

Pytorch中Group Normalization的具体实现

Group Normalization (GN) 是一种用于深度神经网络中的归一化方法,它将每个样本划分为小组,并在每个小组内进行标准化。与批归一化(Batch Normalization)不同,Group Normalization 不依赖于小批量数据,因此…

【Hadoop_04】HDFS的API操作与读写流程

1、HDFS的API操作1.1 客户端环境准备1.2 API创建文件夹1.3 API上传1.4 API参数的优先级1.5 API文件夹下载1.6 API文件删除1.7 API文件更名和移动1.8 API文件详情和查看1.9 API文件和文件夹判断 2、HDFS的读写流程(面试重点)2.1 HDFS写数据流程2.2 网络拓…

[Angular] 笔记1:开发设置 , 双向绑定

1 设置开发环境 1.1 安装 node 下载 node,因为要使用 npm 工具,教程中使用 Angualr 14, 最新版 node 20 用不了,安装 node 16 就可以。 1.2 安装 Angular CLI Angular CLI 是用于创建 Angular 工程的工具集,使用如下命令&…

HTML实现页面

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>工商银行电子汇款单</title> </head> &…

数据挖掘目标(客户价值分析)

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as snsIn [2]: datapd.read_csv(r../教师文件/air_data.csv)In [3]: data.head()Out[3]: Start_timeEnd_timeFareCityAgeFlight_countAvg_discountFlight_mileage02011/08/182014/0…

网络基础(八):路由器的基本原理及配置

目录 1、路由概述 2、路由器 2.1路由器的工作原理 2.2路由器的转发原理 3、路由表 3.1路由表的概述 3.2路由表的形成 4、静态路由配置过程&#xff08;使用eNSP软件配置&#xff09; 4.1两个静态路由器配置过程 4.2三个静态路由器配置过程 5、默认路由配置过程 5.…

得帆云为玉柴打造CRM售后服务管理系统,实现服务全过程管理|基于得帆云低代码的CRM案例系列

广西玉柴机器股份有限公司 广西玉柴机器股份有限公司始建于1992年&#xff0c;是国内行业首家赴境外上市的中外合资企业&#xff0c;产品远销亚欧美非等180多个国家和地区。公司总部设在广西玉林市&#xff0c;下辖11家子公司&#xff0c;生产基地布局广西、江苏、安徽、山东等…

收发货拥抱新技术,纵行科技推ZETag方案实现更精准的自动识别

对于制造及物流企业来说&#xff0c;收发货是影响其运营效率和成本控制的关键因素。然而传统的收发货管理高度依赖人工核对&#xff0c;比如目前国内汽车工厂零件到货验收主要采用人工方式&#xff0c;验收人员需根据送货看板进行数量清点&#xff0c;确认无误后用手持终端扫描…

多维时序 | Matlab实现GA-LSTM-Attention遗传算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测

多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | Matlab实…

K8S(一)—安装部署

目录 安装部署前提以下的操作指导(在master)之前都是三台机器都需要执行 安装docker服务下面的操作仅在k8smaster执行 安装部署 前提 以下的操作指导(在master)之前都是三台机器都需要执行 关闭防火墙 [rootk8smaster ~]# vim /etc/selinux/config [rootk8smaster ~]# swa…

Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)

本作品是一套 Axure8 高保真移动端电商APP产品原型模板&#xff0c;包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…