智能优化算法应用:基于群居蜘蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/26 13:06:50

智能优化算法应用:基于群居蜘蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于群居蜘蛛算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.群居蜘蛛算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用群居蜘蛛算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.群居蜘蛛算法

群居蜘蛛算法原理请参考:https://blog.csdn.net/u011835903/article/details/108406547
群居蜘蛛算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


群居蜘蛛算法参数如下:

%% 设定群居蜘蛛优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明群居蜘蛛算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1305317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LuatOS】简单案例网页点灯

材料 硬件:合宙ESP32C3简约版,BH1750光照度模块,0.96寸OLED(4P_IIC),杜邦线若干 接线: ESP32C3.GND — OLED.GND — BH1750.GND ESP32C3.3.3V — OLED.VCC — BH1750.VCC ESP32C3.GPIO5 — OLED.SCL — BH1750.SCL E…

人工智能导论习题集(1)

第二章:知识表示 题1题2题3题4题5 题1 题2 题3 题4 题5

【从零开始学习JVM | 第六篇】快速了解 直接内存

前言: 当谈及Java虚拟机(JVM)的内存管理时,我们通常会想到堆内存和栈内存。然而,还有一种被称为"直接内存"的特殊内存区域,它在Java应用程序中起着重要的作用。直接内存提供了一种与Java堆内存和…

DRBD分布式存储实验

DRBD DRBD的全称为:Distributed Replicated Block Device (DRBD) 分布式块设备复制 与心跳连接结合使用,构建高可用性(HA)的集群。 实现方式是通过网络来镜像(mirror)整个设备。它允许用户在远程机器上建立一个本地块设备的实时镜像。DRBD负责接收数据…

[Linux] Tomcat

一、Tomcat相关知识 1.1 Tomcat的简介 Tomcat 是 Java 语言开发的,Tomcat 服务器是一个免费的开放源代码的 Web 应用服务器,是 Apache 软件基金会的 Jakarta 项目中的一个核心项目,由 Apache、Sun 和其他一些公司及个人共同开发而成。Tomc…

Python从入门到精通九:Python异常、模块与包

了解异常 什么是异常 当检测到一个错误时,Python解释器就无法继续执行了,反而出现了一些错误的提示,这就是所谓的“异常”, 也就是我们常说的BUG bug单词的诞生 早期计算机采用大量继电器工作,马克二型计算机就是这样的。 19…

元素定位,年轻人在 Web UI 自动化成长道路上吃的第一个亏

元素定位,对于 Web UI 自动化而言,绝对是大家成长道路上的一道绊脚石。很多初学者,都“死”在了元素定位上,从而失去了学习的兴趣。导致职业规划不得不半途而废~那么,今天,我们就使用 Katalon Studio&#…

我的创作三周年纪念日

今天收到CSDN官方的来信,创作三周纪念日到了。 Dear: Hann Yang ,有幸再次遇见你: 还记得 2020 年 12 月 12 日吗? 你撰写了第 1 篇技术博客: 《vba程序用7重循环来计算24》 在这平凡的一天,你赋予了它…

Python编程技巧 – 使用组合运算符

Python编程技巧 – 使用组合运算符 Python Programming Skills – Using Combined Operators Python通过赋值过程,将声明变量与赋值和而为之,可谓讲求效率。此外,在Python赋值运算符里,也有一个强大高效的功能,即复合…

Python 神奇解码器:pyWhat 库全面指南

更多资料获取 📚 个人网站:ipengtao.com 在当今数字化的世界中,理解和处理文本数据是许多应用程序的关键任务。而PyWhat库作为一个用于处理文本的Python库,提供了强大的功能,帮助开发者在文本中识别和提取有意义的信息…

n-Track Studio Suite,音频录制与编辑的新纪元

在音乐制作领域,n-Track Studio Suite已经成为了音频录制和编辑的新标杆。这款软件将功能强大、操作简便和艺术创新完美融合,为用户提供了前所未有的音乐制作体验。 n-Track Studio Suite以其先进的音频处理技术,提供了精确的音频录制、编辑…

【从零开始学习JVM | 第三篇】类的生命周期(高频面试)

前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。 在本文中,我们将深入探讨类的生命周期,从类加载到…

VUE3语法--toRefs与toRef用法

1、功能概述 ref和reactive能够定义响应式的数据,当我们通过reactive定义了一个对象或者数组数据的时候,如果我们只希望这个对象或者数组中指定的数据响应,其他的不响应。这个时候我们就可以使用toRefs和toRef实现局部数据的响应。 toRefs是…

【探讨】bp神经网络是前馈还是后馈

目录 一、BP神经网络简介 1.1 什么是BP神经网络 1.2 BP神经网络的结构 二、BP神经网络的前馈与后馈 2.1 什么是BP神经网络的前馈 2.2 什么是BP神经网络的后馈 三、BP神经网络前馈与后馈的关系 3.1 BP神经网络前馈与后馈的区别 3.2 BP神经网络前馈与后馈的意义 四、BP…

论文阅读三——端到端的帧到凝视估计

论文阅读三——端到端的帧到凝视估计 主要内容研究问题文章的解题思路文章的主要结构 论文实验关于端到端凝视估计的数据集3种基线模型与EFE模型的对比在三个数据集中与SOTA进行比较 问题分析重要架构U-Net 基础知识 主要内容 文章从端到端的方法出发,提出了根据he…

Linux---虚拟机软件

1. 虚拟机软件的介绍 它是能够虚拟出来计算机的一个软件。 常用虚拟机软件: VmwareVirtualBox 说明: 只有安装了虚拟机软件才可以创建虚拟机,当然通过虚拟机软件还可以创建多个虚拟机。 2. 虚拟机的介绍 就是模拟一个真实的计算机,好比一个虚拟的…

Mybatis映射接口的动态代理实现原理

Mybatis映射接口的动态代理实现原理 在上一节中,我们介绍了MyBatis的核心配置文件加载流程,Mybatis核心配置文件加载流程详解 在文中,我们介绍了MyBatis在加载配置文件的过程中会针对每个接口类都生成一个相应的MapperProxyFactory动态代理工…

【异常解决】SpringBoot + Maven 在 idea 下启动报错 Unable to start embedded Tomcat(已解决)

Unable to start embedded Tomcat(已解决) 一、背景介绍二、原因分析2.1 网络上整理2.2 其他原因 三、解决方案 一、背景介绍 spring boot(v2.5.14) maven idea 启动项目 之前项目一直启动的好好的,都能正常运行。重启的时候突然就不能启…

单元测试技术

文章目录 一、单元测试快速入门二、单元测试断言三、Junit框架的常用注解 一、单元测试快速入门 所谓单元测试,就是针对最小的功能单元,编写测试代码对其进行正确性测试。 常规的例如如果在main中测试,比如说我们写了一个学生管理系统&…

MSPM0L1306例程学习-ADC部分(1)

MSPM0L1306例程学习-ADC部分(1) MSPM0L1306例程学习 使用的TI的官方例程,即SDK里边包含的例程代码。 MCU使用的是MSPM0L1306, 对于ADC部分,有10个例程: 例程理解 ADC的转换有多种工作模式,从最简单的单通道单次转换开始入手…