『 Linux 』进程地址空间概念

news2024/11/24 11:09:04

文章目录

    • 🫙 前言
    • 🫙 进程地址空间是什么
    • 🫙 写时拷贝
    • 🫙 可执行程序中的虚拟地址
    • 🫙 物理地址分布方式


🫙 前言

请添加图片描述

在c/C++中存在一种内存的概念;

一般来说一个内存的空间分布包括栈区,堆区,代码段等等;

且内存是自底向上(由0x000000000xFFFFFFFF);
以该图为例:

在这里插入图片描述

该图即为常见的内存分布图;

  • 正文代码段

    正文代码段所存放的数据一般为函数体的二进制代码;

  • 已初始化数据区

    已初始化数据区所存放的数据是在程序中声明的,并且具有初始值的变量,这些变量需要占用存储器的空间;

  • 未初始化数据区

    未初始化数据区所存放的数据是没有进行初始化或者初始值为0的数据,这些数据在存储时不需要额外占用存储器的空间;

  • 堆空间一般为动态空间,即需要成需要手动分配释放;若是分配了堆区空间但使用过后未对堆空间进行手动释放则将会出现内存泄漏的问题;

  • 一般情况下栈所存放的数据基本上都为局部变量;

  • 命令行参数/环境变量

    命令行参数/环境变量,顾名思义该段空间用来存放OS给程序所传递的命令行参数与环境变量;

  • 内核空间

    在Linux操作系统当中,内存的分布一般为其中3G为用户空间,1G为内核空间;

以下操作均在CentOS7_x64环境下进行

存在一个程序 ( mytest ) :

  int init = 10; 

  int uninit; 

int main(int argc,char *argv[],char *env[])
{
  char*ch1= new char[10]; 
  char*ch2= new char[10];
  char*ch3= new char[10];
  char*ch4= new char[10];
  char*ch5= new char[10];

  printf("init : %p\n",&init);//已初始化数据
  printf("uninit : %p\n",&uninit);//未初始化数据
  printf("text : %p\n",main);//正文代码段

  cout<<"--------------"<<endl;

    //堆区
  printf("heap1 : %p\n",ch1);
  printf("heap2 : %p\n",ch2);
  printf("heap3 : %p\n",ch3);
  printf("heap4 : %p\n",ch4);
  printf("heap5 : %p\n",ch5);
	
  cout<<"--------------"<<endl;

    //栈区
  printf("stack1 : %p\n",&ch1);
  printf("stack2 : %p\n",&ch2);
  printf("stack3 : %p\n",&ch3); 
  printf("stack4 : %p\n",&ch4);
  printf("stack5 : %p\n",&ch5);

  cout<<"--------------"<<endl;

    //命令行参数
  for(int i = 0;i<argc;++i){
    printf("argv[%d] : %p\n",i,argv[i]);
  }

  cout<<"--------------"<<endl;

    //环境变量
  for(int i = 0;env[i];++i){
    printf("env[%d] : %p\n",i,env[i]);
  }

  return 0;
}

从这段代码中可以打印出内存中不同数据的内存分布情况;

但实际上在OS层面中,这些所谓的内存并非物理内存;


🫙 进程地址空间是什么

请添加图片描述
在上文中说到,进程所访问的地址并不是物理地址;

存在一个程序(证明):

using namespace std;

int tmp = 100;

int main()
{
  pid_t id = fork();
  if(id == 0){
    int s = 5;
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
      sleep(1);
      s--;
      if(!s) tmp = 200;
    }
  }
  else{
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
    sleep(1);
    }
  }
  return 0;
}

在该程序中定义了一个全局变量,并使用fork()函数对该进程创建了一个子进程,同时分别在父子进程中打印该全局变量的值与地址;

pid : 28930 ppid : 28929 tmp : 100 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c
pid : 28930 ppid : 28929 tmp : 200 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c

当五秒过后,子进程修改了全局变量的值;

可在父进程当中的这个全局变量并未被更改,且父子进程中所显示的这个全局变量tmp地址相同;

然而实际上,一个程序在运行的过程中所使用的内存地址为虚拟地址(线性地址);

在过去的计算机中,进程对于内存的访问是以直接访问的形式,即运行程序时程序载入至内存当中称为进程,CPU根据进程中的代码数据对内存的各个地址(物理地址)进行操作;

在这里插入图片描述

但是由于访问的是物理内存地址,所以若是程序在内存当中误操作则会导致某些进程的崩溃;

这种操作是十分不安全的操作;

所以为了保证安全性同时也保证进程间的独立性,现在的OS当中,出现了进程地址空间的概念;

在这里插入图片描述

每个进程都存在一个称为进程地址空间的数据结构(mm_struct结构体);

在这个结构体当中以一种类似于区间的方式模拟出地址(在Linux2.6的版本中使用unsigned long类型实现);

/*释放线性区的调用方法*/
 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
#endif
    unsigned long mmap_base;		/* base of mmap area ,内存映射区的基地址*/
    unsigned long task_size;		/* size of task vm space */
    unsigned long cached_hole_size; 	/* if non-zero, the largest hole below free_area_cache */
    unsigned long free_area_cache;		/* first hole of size cached_hole_size or larger */
    pgd_t * pgd;                            /* 页表目录指针*/
    atomic_t mm_users;			/* How many users with user space?,共享进程的个数 */
    atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1),主使用计数器,采用引用计数,描述有多少指针指向当前的mm_struct */
    int map_count;				/* number of VMAs ,线性区个数*/
    struct rw_semaphore mmap_sem;
    spinlock_t page_table_lock;		/* Protects page tables and some counters,保护页表和引用计数的锁 (使用的自旋锁)*/
 
    struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
                         * together off init_mm.mmlist, and are protected
                         * by mmlist_lock
                         */
    unsigned long hiwater_rss;	/* High-watermark of RSS usage,进程拥有的最大页表数目 */
    unsigned long hiwater_vm;	/* High-water virtual memory usage ,进程线性区的最大页表数目*/
    
    unsigned long total_vm, locked_vm, shared_vm, exec_vm;
    unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
    unsigned long start_code, end_code, start_data, end_data;     /*维护代码区和数据区的字段*/
    unsigned long start_brk, brk, start_stack;       /*维护堆区和栈区的字段*/
    unsigned long arg_start, arg_end, env_start, env_end;  /*命令行参数的起始地址和尾地址,环境变量的起始地址和尾地址*/
    unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */

除此之外在进程地址空间这个结构体中有一个指针,这个指针所指向的位置即为页表;

所谓的页表就是一种映射关系,这种映射关系以一种key/value的模型将对应的物理地址与虚拟地址进行一种存储,在查找或访问时将访问至虚拟地址,通过该虚拟地址通过页表的key/value模型找到其对应的物理内存再进行访问;

在CPU中存在一个内存管理单元(MMU),这个内存管理单元是CPU中的一个模块,这个模块具体的作用为负责虚拟地址到物理地址的转换;

在这里插入图片描述

以该图为例,其中task_struct表示PCB结构体,即进程控制块;

mm_struct即为该进程的进程地址空间,mm_struct中的pgd即为页表;


🫙 写时拷贝

请添加图片描述

当多个进程或线程共享同一块内存时,内核会使用写时拷贝来优化内存的复制行为;

当有一个进程尝试修改共享内存页面时,Linux内核会触发写时拷贝机制;

它会为修改的进程创建一个新的私有副本,并将修改的内容写入新的副本中,而不是立即修改原始的共享页面;

以该例子为例:

using namespace std;

int tmp = 100;

int main()
{
  pid_t id = fork();
  if(id == 0){
    int s = 5;
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
      sleep(1);
      s--;
      if(!s) tmp = 200;
    }
  }
  else{
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
    sleep(1);
    }
  }
  return 0;
}

在该例子中程序运行的结果为:

pid : 28930 ppid : 28929 tmp : 100 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c
pid : 28930 ppid : 28929 tmp : 200 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c

两个进程中的变量的地址相同但其值不同的原因就是在于其所在的虚拟地址相同但页表中虚拟地址所映射的物理地址不同;

在这个程序当中,使用fork()函数创建了子进程,由于子进程是由父进程创建的,所以对应的子进程的PCB结构体继承于父进程,即当父进程创建出一个子进程时,该子进程将会对父进程的PCB结构体进行一次浅拷贝,所以父子进程所对应的代码资源是共享的;

在这里插入图片描述

在只读的情况下两个进程的页表所映射至的物理地址也许相同的,而当一个进程要修改该物理内存中的内容时,OS将会重新在物理内存中申请一块空间,同时修改该进程所对应的页表映射关系;

在这里插入图片描述


🫙 可执行程序中的虚拟地址

请添加图片描述
实际在可执行程序当中也存在着所谓的虚拟地址,在一般的教材当中也被称为"逻辑地址";

存在一个程序:

#include<iostream>
using namespace std;

int g_val = 100;

int main()
{
  cout<<&g_val<<endl;
  return 0;
}

这个程序运行之后可以打印出该程序中全局变量g_val的地址;

在Linux中存在一个命令可以打印出一个可执行程序中的逻辑地址(虚拟地址),即objdump;

语法:

objdump -x <executable_file>

在此处配合| grep打印出该可执行程序中的虚拟地址,即:

objdump -x mytest | grep g_val

使用该命令后运行该程序:

$ objdump -x mytest | grep g_val
00000000004007f7 l     F .text	0000000000000015              _GLOBAL__sub_I_g_val
000000000060105c g     O .data	0000000000000004              g_val
$ ./mytest 
0x60105c

在上面的程序当中,程序运行的结果(打印全局变量地址)与使用objdump所显示出磁盘中的全局变量g_val地址相同,由此可见其进程中的虚拟地址与本在磁盘中的虚拟地址相同;

实际上在计算机当中,本质上无论是磁盘中的虚拟地址(逻辑地址)还是在进程当中的虚拟地址都是相同的;

只不过是在进程与磁盘中的表现形式不同;

当程序编译链接完成时生成的可执行程序当中将会存在代码数据等,在这些代码数据当中存在着静态的虚拟地址,这些地址被称作逻辑地址;

当这个程序被执行后即被加载至内存当中成为进程时,进程将会去初始化自身的PCB结构体;相对应的PCB结构体内的各种数据结构也将要被进行维护与初始化;

磁盘中的虚拟地址(逻辑地址)将会初始化PCB结构体中对应的进程地址空间,使得进程地址空间中的虚拟地址与原本磁盘内的虚拟地址(逻辑地址)保持一致;

在这里插入图片描述


🫙 物理地址分布方式

请添加图片描述
在上面的图中可以发现:

在对进程地址空间进行初始化时,真正将虚拟地址与物理地址进行关联的时候,其物理地址并没有按照原本的虚拟地址原模原样的进行对应的初始化;

在对对应物理地址进行初始化时更像是以一种随机的方式;

为了物理内存的安全性,Linux中采用了一种地址空间随机化(ASLR)的一种内存攻击缓存技术;

当对应的进程地址空间的虚拟地址在初始化时通过页表映射至物理内存时将会采用这种方式;

使得对应进程的物理内存地址无法被预测,也保证了进程在运行时的安全性;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1304362.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智慧机房与3D机房动环监控系统的应用

智慧机房是什么&#xff1f; 智慧机房是集采集信息、实时监控、数据分析、统一管理、故障告警等功能于一体的全方位、立体化的智能环境监控系统&#xff0c;构建物联网、大数据和云计算背景下现代企业的“数据心脏”。它能为机房管理者呈现细致入微的关键性数据&#xff0c;优…

Error: Failed to resolve vue/compiler-sfc——vite项目启动报错——npm run serve

运行项目时&#xff0c;报错如下&#xff1a; Error: Failed to resolve vue/compiler-sfc 根据报错信息的提示&#xff1a;vue的版本必须大于3.2.25&#xff0c;经过查看package.json文件&#xff0c;可以看到vue的版本为3.2.36&#xff0c;是满足条件的。 因此考虑缓存问题&…

Git 硬重置之后恢复历史提交版本

****硬重置之前一定要备份分支呀&#xff0c;谨慎使用硬重置&#xff0c;特别是很多人一起使用的分支**** 如果你在reset的时候选择了Hard选项&#xff0c;也就是硬重置 重置完且push过&#xff0c;那么被你本地和远端后面的提交记录肯定就会被抹去。 解决办法&#xff1a; …

BearPi Std 板从入门到放弃 - 先天神魂篇(1)(RT-Thread 指令点亮LED)

简介 使用 BearPi IOT Std板&#xff0c; 开发板简单信息 主芯片: STM32L431RCT6 串口: Usart1 USER LED : PC13 E53_SC1 扩展板与主板连接: I2C : I2C1 (光照强度传感器&#xff1a;BH1750) LED: PB9RT-Thread 创建线程 线程的管理方式 添加用户代码 main.c #include <…

从零构建属于自己的GPT系列6:模型本地化部署2(文本生成函数解读、模型本地化部署、文本生成文本网页展示、代码逐行解读)

&#x1f6a9;&#x1f6a9;&#x1f6a9;Hugging Face 实战系列 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在PyCharm中进行 本篇文章配套的代码资源已经上传 从零构建属于自己的GPT系列1&#xff1a;数据预处理 从零构建属于自己的GPT系列2&#xff1a;模型训…

adb命令学习记录

1、 adb ( android debug bridge)安卓调试桥&#xff0c;用于完成电脑和手机之间的通信控制。 xcode来完成对于ios设备的操控&#xff0c;前提是有个mac电脑。 安卓系统是基于linux内核来进行开发的。 2、adb的安装: 本身 adb是 android SDK 其中自带的工具&#xff0c;用于完…

山西电力市场日前价格预测【2023-12-09】

1.日前价格预测 预测说明&#xff1a; 如上图所示&#xff0c;预测明日&#xff08;2023-12-09&#xff09;山西电力市场全天平均日前电价为366.40元/MWh。其中&#xff0c;最高日前电价为629.26元/MWh&#xff0c;预计出现在08:00。最低日前电价为216.58元/MWh&#xff0c;预…

PySpark大数据处理详细教程

欢迎各位数据爱好者&#xff01;今天&#xff0c;我很高兴与您分享我的最新博客&#xff0c;专注于探索 PySpark DataFrame 的强大功能。无论您是刚入门的数据分析师&#xff0c;还是寻求深入了解大数据技术的专业人士&#xff0c;这里都有丰富的知识和实用的技巧等着您。让我们…

使用工业级以太网交换机,需要注意哪些问题?

企业常用工业级以太网交换机进行网络组网&#xff0c;主要有两种情况。第一种是通过协议转换器将专线转换为以太网交换机&#xff0c;第二种是直接租用裸光纤。具体而言&#xff0c;在三、四层网络选择的三层交换机通常只能配置简单的动态路由协议、简单的策略路由和简单的访问…

如何管理大型网站的抓取预算

优化您的网站&#xff0c;以便 Google 更快地找到您的内容并将您的内容编入索引&#xff0c;这可以帮助您的网站获得更好的知名度和流量。 互联网是一个不断发展的虚拟世界&#xff0c;拥有超过 1 亿个网站。 你认为谷歌可以抓取世界上的每一个网站吗&#xff1f; 即使拥有谷…

【SpringBoot篇】详解基于Redis实现短信登录的操作

文章目录 &#x1f970;前言&#x1f6f8;StringRedisTemplate&#x1f339;使用StringRedisTemplate⭐常用的方法 &#x1f6f8;为什么我们要使用Redis代替Session进行登录操作&#x1f386;具体使用✨编写拦截器✨配置拦截器&#x1f33a;基于Redis实现发送手机验证码操作&am…

DNF 单机联网 搭建教程(附视频)

更多游戏搭建&pvf修改教程请见: DNF教程 注意&#xff1a;请不要将游戏进行商业化&#xff0c;一切后果概不负责。仅供单机&#xff0c;好友之间进行娱乐&#xff01;&#xff01; 注意&#xff1a;请不要将游戏进行商业化&#xff0c;一切后果概不负责。仅供单机&#…

重塑未来工作方式,亚马逊云科技re:Invent推出生成式AI助手Amazon Q

亚马逊云科技在re:Invent 2023宣布推出Amazon Q&#xff0c;这是一种新型生成式AI支持的助手&#xff0c;专门用于满足办公场景需要&#xff0c;可以根据客户业务进行定制。客户可以快速获得复杂问题的相关答案、生成内容并采取行动——所有这些都基于客户自身的信息存储库、代…

区块链的可拓展性研究【03】扩容整理

为什么扩容&#xff1a;在layer1上&#xff0c;交易速度慢&#xff0c;燃料价格高 扩容的目的&#xff1a;在保证去中心化和安全性的前提下&#xff0c;提升交易速度&#xff0c;更快确定交易&#xff0c;提升交易吞吐量&#xff08;提升每秒交易量&#xff09; 目前方案有&…

qt 使用百度在线地图 方法2

使用百度在线地图两个关键点&#xff0c;一是html页面准备&#xff1b;二是qt 与js 语言的交互。 1&#xff0c;html页面的准备&#xff0c;双击页面就可以出现如下效果。 主要代码&#xff1a; <!DOCTYPE html> <html> <head><meta http-equiv"C…

亚马逊云科技开发Amazon Bedrock,使构建和移动就像API调用一样简单

企业希望在各种场景中应用生成式AI&#xff0c;例如提高生产效率&#xff0c;创新用户体验和开启全新工作方式。然而&#xff0c;生成式AI技术正快速发展&#xff0c;每天都有新的服务和创新发生。在日新月异的当下&#xff0c;客户的适应能力至关重要。企业需要能够使用最新、…

详解SVG文件

2023年12月12日&#xff0c;周二下午 目录 什么是SVG文件如何查看SVG文件方法1&#xff1a;使用VSCode的"SVG"插件方法2&#xff1a;使用WPS图片​编辑方法3&#xff1a;通过在线网站进行查看怎么制作自己的SVG文件 什么是SVG文件 SVG 是可缩放矢量图形&#xff08…

3_流量预测综述阅读_Cellular traffic prediction with machine learning: A survey

为了方便学习英语书写&#xff0c;总结的一些话用英语书写 ♥目录♥ 0、文献来源and摘要1、introduction2、prediction problems and datasets2.1 prediction problems2.2 dataset&#xff08;1&#xff09;Telecom Italia 意大利电信 2015&#xff08;2&#xff09;City Cell…

深入理解RBAC权限系统

最近&#xff0c;一位朋友在面试中被问及如何设计一个权限系统。我们注意到目前许多后台管理系统&#xff08;包括一些热门的如若依快速开发平台&#xff09;都采用了RBAC访问控制策略。该策略通过将权限授予角色&#xff0c;然后将角色分配给用户&#xff0c;从而实现对系统资…

仿短视频风格的自适应苹果CMS模板源码

这是一款仿短视频风格的自适应苹果CMS模板源码&#xff0c;设计简洁&#xff0c;适合用于搭建个人视频网站或者短视频分享平台。模板支持响应式布局&#xff0c;演示地 址 runruncode.com/yingshimanhau/19650.html 适配各种屏幕尺寸&#xff0c;功能丰富&#xff0c;用户体验良…