【LLM】大模型之RLHF和替代方法(DPO、RAILF、ReST等)

news2025/1/1 23:02:00

note

  • SFT使用交叉熵损失函数,目标是调整参数使模型输出与标准答案一致,不能从整体把控output质量,RLHF(分为奖励模型训练、近端策略优化两个步骤)则是将output作为一个整体考虑,优化目标是使模型生成高质量回复。
    • 启发1:像可以用6b、66b依次得到差一点、好一点的target构造排序数据集,进行DPO直接偏好学习或者其他RLHF替代方法(RAILF、ReST等),比直接RLHF更方便训练
    • 启发2:为了减少幻觉(如拒绝回答),可以构造排序数据集(如good response为拒绝话术,bad response是没拒绝的胡乱回答)进行RLHF
    • 实验:基于chatglm 6b、gpt4构造排序数据集,然后对微调6b后的sft模型进行dpo直接偏好学习训练
  • 奖励模型训练:奖励模型通常也采用基于 Transformer 架构的预训练语言模型。在奖励模型中,移除最后一个
    非嵌入层,并在最终的 Transformer 层上叠加了一个额外的线性层。无论输入的是何种文本,奖励
    模型都能为文本序列中的最后一个标记分配一个标量奖励值,样本质量越高,奖励值越大。
  • 在RLHF中(比如MOSS-RLHF)是使用奖励模型来初始化评论家模型(critic model)和奖励模型(reward model),评论家模型也使用奖励模型初始化,便于在早期提供较准确的状态值估计;但是注意PPO会对策略模型、评论家模型训练并更新;奖励模型、参考模型不参与训练。
    • 异策略:固定一个演员和环境交互(不需要更新),将交互得到的轨迹交给另一个负责学习的演员训练。PPO就是策略梯度的异策略版本。通过重要性采样(这里使用KL散度)进行策略梯度的更新。PPO解决了传统策略梯度方法的缺点:高方差、低数据效率、易发散等问题。
    • PPO-clip算法通过引入裁剪机制来限制策略更新的幅度,使得策略更新更加稳定

文章目录

  • note
  • 零、强化学习基础知识
    • 1. 强化学习框架的六要素
  • 一、RLHF对齐
    • 1. 训练奖励模型和RL
    • 2. RLHF
    • 3. 常见的公开偏好数据集
  • 二、PPO近端策略优化
    • 1. PPO介绍
    • 2. PPO效果
  • 三、Llama2中的RLHF
    • 1. 两个奖励模型
    • 2. 拒绝采样步骤
  • 四、RLHF的替代技术
    • (一)DPO直接偏好优化
      • 1. DPO模型
      • 2. DPO实验
      • 3. 微软的PPO实践
      • 4. DPO、PPO、BPO区别
    • (二)RLAIF模型
    • (三)ReST模型
    • (四)Constitutional AI
    • (五)RRHF模型
    • (六)ReMax模型
    • (七)RSO模型
  • Reference

零、强化学习基础知识

1. 强化学习框架的六要素

(1)一句话:RL是研究agent智能体和环境交互的问题,目标是使agent在复杂而不确定的环境中最大化奖励值。

  • 智能体(Agent):强化学习的主体也就是作出决定的“大脑”;
  • 环境(Environment):智能体所在的环境,智能体交互的对象;
  • 行动(Action):由智能体做出的行动;
  • 奖励(Reward):智能体作出行动后,该行动带来的奖励;
  • 状态(State):智能体自身当前所处的状态;
  • 目标(Objective):指智能体希望达成的目标。

串起6要素:一个在不断变化的【环境】中的【智能体】,为了达成某个【目标】,需要不断【行动】,行动给予反馈即【奖励】,智能体对这些奖励进行学习,改变自己所处的【状态】,再进行下一步行动,即持续这个【行动-奖励-更新状态】的过程,直到达到目标。

(2)策略与价值:

  • agent在尝试各种行为时,就是在学习一个策略policy(一套指导agent在特定状态下行动的规则)
  • agent会估计价值value,即预测未来采取某个行为后所能带来的奖励

任何一个有智力的个体,它的学习过程都遵循强化学习所描述的原理。比如说,婴儿学走路就是通过与环境交互,不断从失败中学习,来改进自己的下一步的动作才最终成功的。再比如说,在机器人领域,一个智能机器人控制机械臂来完成一个指定的任务,或者协调全身的动作来学习跑步,本质上都符合强化学习的过程。

(3)奖励模型(Reward Model)和评论模型(Critic Model):

  1. 奖励模型(Reward Model):奖励模型是强化学习中一个基本元素,它定义了智能体执行特定动作后将得到的奖励。换句话说,奖励模型为智能体在其环境中执行的每个动作提供奖励(正面)或惩罚(负面)。这个模型帮助智能体理解哪些动作是有利的,哪些不是,因此,智能体尝试通过最大化获得的总奖励来找到最优策略。

  2. 评论模型(Critic Model):评论模型是一种基于值迭代的方法,它在每个状态或动作上评估(或者"评论")期望的未来奖励。评论者用来估计一个动作或状态的长期价值,通常在演员-评论者模型(Actor-Critic Models)中使用,演员选择动作,评论者评估动作。

两者的主要区别在于,奖励模型直接反映了每个动作的即时反馈,而评论模型是对未来奖励的一个预测或估计,关注的是长期价值,通常基于数学期望来进行评估。

一、RLHF对齐

1. 训练奖励模型和RL

用奖励模型训练sft模型,生成模型使用奖励或惩罚来更新策略,以便生成更高质量、符合人类偏好的文本。

奖励模型RL强化学习
作用(1)学习人类兴趣偏好,训练奖励模型。由于需要学习到偏好答案,训练语料中含有response_rejected不符合问题的答案。 (2)奖励模型能够在RL强化学习阶段对多个答案进行打分排序。根据奖励模型,训练之前的sft微调模型,RL强化学习阶段可以复用sft的数据集
训练语料{‘question’: ‘土源性线虫感染的多发地区是哪里?’, ‘response_chosen’: ‘苏北地区;贵州省剑河县;西南贫困地区;桂东;江西省鄱阳湖区;江西省’, ‘response_rejected’: ‘在热带和亚热带地区的农村。’},{‘qustion’:‘这是一个自然语言推理问题:\n前提:要继续做好扶贫工作,帮助贫困地区脱贫致富\n假设:中国有扶贫工作\n选项:矛盾,蕴含,中立’ ‘answer’:‘蕴含。因为前提中提到了要继续做好扶贫工作,这表明中国存在扶贫工作。因此,前提蕴含了假设。’}

2. RLHF

RLHF(reinforcement learning from human feedback)
在这里插入图片描述

  • 分为三个步骤
    • step1 我做你看:有监督学习,从训练集中挑出一批prompt,人工对prompt写答案。其实就是构造sft数据集进行微调。
    • step2 你做我看:奖励模型训练,这次不人工写答案了,而是让GPT或其他大模型给出几个候选答案,人工对其质量排序,Reward model学习一个打分器;这个让机器学习人类偏好的过程就是【对齐】,但可能会导致胡说八道,可以通过KL Divergence等方法解决。
      • instructGPT中奖励模型的损失函数如下,其中 rθ(x,y) 是奖励模型对提示x和完成y的标量输出,具有参数θ, y w y_w yw y w y_w yw y l y_l yl中更受欢迎的补全,D是人类比较的数据集。 loss ⁡ ( θ ) = − 1 ( K 2 ) E ( x , y w , y l ) ∼ D [ log ⁡ ( σ ( r θ ( x , y w ) − r θ ( x , y l ) ) ) ] \operatorname{loss}(\theta)=-\frac{1}{\left(\begin{array}{c} K \\ 2 \end{array}\right)} E_{\left(x, y_w, y_l\right) \sim D}\left[\log \left(\sigma\left(r_\theta\left(x, y_w\right)-r_\theta\left(x, y_l\right)\right)\right)\right] loss(θ)=(K2)1E(x,yw,yl)D[log(σ(rθ(x,yw)rθ(x,yl)))]
      • 每个样本包括questionresponse_chosenresponse_rejected键值对,每对样本的loss定义: L ( ψ ) = log ⁡ σ ( r ( x , y w ) − r ( x , y l ) ) \mathcal{L}(\psi)=\log \sigma\left(r\left(x, y_w\right)-r\left(x, y_l\right)\right) L(ψ)=logσ(r(x,yw)r(x,yl))
        • 其中上面的符号: σ \sigma σ 是 sigmoid 函数, r r r 代表参数为 ψ \psi ψ 的奖励模型的值, r ( x , y ) r(x, y) r(x,y) 表示针对输入提示 x x x 和输出 y y y所预测出的单一标量奖励值。
        • 上面是instructGPT的ranking loss,但是llama2中增加一个离散函数 m ( r ) m(r) m(r)

在这里插入图片描述

  • step3 自学成才:PPO训练,利用第二阶段的奖励模型RM计算奖励分数,同时使用PPO(近端策略优化)更新第一步训练得到的sft模型,最大优化该目标函数:  objective  ( ϕ ) = E ( x , y ) ∼ D π ϕ R L [ r θ ( x , y ) − β log ⁡ ( π ϕ R L ( y ∣ x ) / π S F T ( y ∣ x ) ) ] + γ E x ∼ D pretrain  [ log ⁡ ( π ϕ R L ( x ) ) ] \begin{aligned} \text { objective }(\phi)= & E_{(x, y) \sim D_{\pi_\phi^{\mathrm{RL}}}}\left[r_\theta(x, y)-\beta \log \left(\pi_\phi^{\mathrm{RL}}(y \mid x) / \pi^{\mathrm{SFT}}(y \mid x)\right)\right]+ \\ & \gamma E_{x \sim D_{\text {pretrain }}}\left[\log \left(\pi_\phi^{\mathrm{RL}}(x)\right)\right] \end{aligned}  objective (ϕ)=E(x,y)DπϕRL[rθ(x,y)βlog(πϕRL(yx)/πSFT(yx))]+γExDpretrain [log(πϕRL(x))]
    • π φ R L π^{RL}_φ πφRL是学习到的RL策略,
    • π S F T π^{SFT} πSFT是监督训练模型,
    • D p r e t r a i n D_pretrain Dpretrain 是预训练分布。
    • KL奖励系数β和预训练损失系数γ分别控制KL惩罚和预训练梯度的强度。对于“PPO”模型,γ 设为 0。

在这里插入图片描述

3. 常见的公开偏好数据集

源自《Llama 2: Open Foundation and Fine-Tuned Chat Models》Table 6:
在这里插入图片描述
如:https://huggingface.co/datasets/lvwerra/stack-exchange-paired

二、PPO近端策略优化

1. PPO介绍

  • 思想:保证策略改进同时,通过一些约束来控制策略更新的幅度;在每次迭代中,通过采样多个轨迹数据来更新策略:
    • 使用当前策略对环境交互,收集多个轨迹数据
    • 利用第一步的轨迹数据计算当前策略和旧策略之间的KL散度,通过控制KL散度大小来限制策略更新的幅度
    • 使用优化器对策略进行更新,使其更加接近当前的样本策略

在这里插入图片描述

  • 近端策略优化PPO涉及到四个模型:
    • (1)策略模型(Policy Model),生成模型回复。
    • (2)奖励模型(Reward Model),输出奖励分数来评估回复质量的好坏。
    • (3)评论模型(Critic Model/value model),来预测回复的好坏,可以在训练过程中实时调整模型,选择对未来累积收益最大的行为。
    • (4)参考模型(Reference Model)提供了一个 SFT 模型的备份,帮助模型不会出现过于极端的变化。
  • 近端策略优化PPO的实施流程如下:
    • 环境采样:策略模型基于给定输入生成一系列的回复,奖励模型则对这些回复进行打分获得奖励。
    • 优势估计:利用评论模型预测生成回复的未来累积奖励,并借助广义优势估计(Generalized Advantage Estimation,GAE)算法来估计优势函数,能够有助于更准确地评估每次行动的好处。
      • GAE:基于优势函数加权估计的GAE可以减少策略梯度估计方差
    • 优化调整:使用优势函数来优化和调整策略模型,同时利用参考模型确保更新的策略不会有太大的变化,从而维持模型的稳定性。

在这里插入图片描述

  • 相关强化学习概念对应:
    • Policy:现有LLM接受输入,进行输出的过程。
    • State:当前生成的文本序列。
    • Action Space:即vocab,也就是从vocab中选取一个作为本次生成的token。
  • KL散度(Kullback-Leibler Divergence),可以衡量两个概率分布之间的差异程度。在 PPO 算法中,KL 散度(Kullback-Leibler Divergence)的计算公式如下:
    K L ( π o l d ∣ ∣ π n e w ) = ∑ i π o l d ( i ) l o g ( π o l d ( i ) / π n e w ( i ) ) KL(π_old || π_new) = ∑i π_old(i) log(π_old(i) / π_new(i)) KL(πold∣∣πnew)=iπold(i)log(πold(i)/πnew(i))
    • 其中,π_old 表示旧的策略,π_new 表示当前的样本策略。KL 散度的含义是用 π_old 的分布对 π_new 的分布进行加权,然后计算两个分布之间的差异程度。
    • 具体来说,KL 散度的计算方法是首先计算 π_old(i) / π_new(i) 的比值,然后对其取对数并乘以 π_old(i) 来进行加权。最后将所有加权后的结果相加,即可得到 KL 散度的值。这里的KL散度值是一个【惩罚项】,即经过RL训练后模型和SFT后模型的KL散度(繁殖两个模型偏差太多,导致模型效果下降,RLHF的主要目的是alignment)。

注意:KL 散度是一个非对称的度量,即 KL(π_old || π_new) 与 KL(π_new || π_old) 的值可能不相等。在 PPO 算法中,我们通常使用 KL(π_old || π_new) 来控制策略更新的幅度,因为 KL(π_old || π_new) 的值通常比 KL(π_new || π_old) 更容易控制,并且更能够反映出策略改变的方向。

2. PPO效果

在instructGPT论文实验中,效果最好的是GPT-3 + supervised finetuning + RLHF的模型:
在这里插入图片描述

三、Llama2中的RLHF

1. 两个奖励模型

  • 核心一:两个奖励模型。Llama-2-chat 遵循与 InstructGPT 的 RLHF 第 1 步相同的基于指令数据的监督式微调步骤。然而,在 RLHF 第 2 步,Llama-2-chat 是创建两个奖励模型,而不是一个(因为有用性、安全性某种程度上是对立关系)。
    • 一个是基于有用性
    • 一个是基于安全性

在这里插入图片描述

2. 拒绝采样步骤

  • 核心二:拒绝采样(rejection sampling)。Llama-2-chat 模型会经历多个演进阶段,奖励模型也会根据 Llama-2-chat 中涌现的错误而获得更新。它还有一个额外的拒绝采样步骤。即有多个输出,选择奖励函数值最高的一个用于梯度更新。即用RM筛选出当前模型最好的结果进行sft。实验中是将llama2-chat迭代了5轮(前4轮采用拒绝采样,最后一轮使用PPO)。
    • 拒绝采样:是蒙特卡洛方法的一种
    • 下图:左边是llama2的reward model,右边是gpt4进行judge;都是基于llama2-chat模型进行微调或PPO。
      在这里插入图片描述

参考维基百科:https://en.wikipedia.org/wiki/Rejection_sampling

四、RLHF的替代技术

(一)DPO直接偏好优化

1. DPO模型

  • 论文:《Direct Preference Optimization: Your Language Model is Secretly a Reward Model 》
  • 论文地址:https://arxiv.org/abs/2305.18290
  • 背景:RLHF是一个复杂、不稳定、难训练的过程(用reward model进行ppo强化学习等),而DPO可以避开训练奖励模型这个步骤,直接对排序数据集进行直接偏好学习。将对奖励函数的损失转为对策略的损失,优化和RLHF相同的目标函数(KL散度限制下,最大化reward)。
    • 相关原理: 和RRHF相似,但带有一个sft模型约束(KL散度),保证不加sft Loss情况下训练不崩溃。原本基于RL的目标,现在通过BCE二元交叉熵来优化(不需要再训练期间明确学习奖励函数or从策略中采样)。
    • 有监督损失函数,DPO优化的目标函数: max ⁡ π θ E π θ ( y ∣ x ) [ r ϕ ( x , y ) − β log ⁡ ∑ y π r e f exp ⁡ ( 1 β r ϕ ( x , y ) ) ⏟ f ( r ϕ , π r e f , β ) − β log ⁡ π θ ( y ∣ x ) π r e f ( y ∣ x ) ⏟ K L ] \max _{\pi_\theta} \mathbb{E}_{\pi_\theta(y \mid x)}[\underbrace{r_\phi(x, y)-\beta \log \sum_y \pi_{\mathrm{ref}} \exp \left(\frac{1}{\beta} r_\phi(x, y)\right)}_{f\left(r_\phi, \pi_{\mathrm{ref}}, \beta\right)}-\underbrace{\beta \log \frac{\pi_\theta(y \mid x)}{\pi_{\mathrm{ref}}(y \mid x)}}_{\mathrm{KL}}] πθmaxEπθ(yx)[f(rϕ,πref,β) rϕ(x,y)βlogyπrefexp(β1rϕ(x,y))KL βlogπref(yx)πθ(yx)]
    • DPO更新参数,目标函数: L D P O ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y w ∣ x ) π r e f ( y w ∣ x ) − β log ⁡ π θ ( y l ∣ x ) π r e f ( y l ∣ x ) ) ] \mathcal{L}_{\mathrm{DPO}}\left(\pi_\theta ; \pi_{\mathrm{ref}}\right)=-\mathbb{E}_{\left(x, y_w, y_l\right) \sim \mathcal{D}}\left[\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_w \mid x\right)}{\pi_{\mathrm{ref}}\left(y_w \mid x\right)}-\beta \log \frac{\pi_\theta\left(y_l \mid x\right)}{\pi_{\mathrm{ref}}\left(y_l \mid x\right)}\right)\right] LDPO(πθ;πref)=E(x,yw,yl)D[logσ(βlogπref(ywx)πθ(ywx)βlogπref(ylx)πθ(ylx))]
      • 注意:奖励函数 r r r和策略 π π π的关系推倒出来后,就能把ranking loss中的奖励函数 r r r替换
      • 目标函数含义:如果是好答案,则尽可能增大被policy策略模型生成的概率
    • 对上面的目标函数的梯度: ∇ θ L D P O ( π θ ; π r e f ) = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) ) ⏟ higher weight when reward estimate is wrong  [ ∇ θ log ⁡ π ( y w ∣ x ) ⏟ increase likelihood of  y w − ∇ θ log ⁡ π ( y l ∣ x ) ⏟ decrease likelihood of  y l ] ] , \begin{aligned} & \nabla_\theta \mathcal{L}_{\mathrm{DPO}}\left(\pi_\theta ; \pi_{\mathrm{ref}}\right)= \\ & -\beta \mathbb{E}_{\left(x, y_w, y_l\right) \sim \mathcal{D}}[\underbrace{\sigma\left(\hat{r}_\theta\left(x, y_l\right)-\hat{r}_\theta\left(x, y_w\right)\right)}_{\text {higher weight when reward estimate is wrong }}[\underbrace{\nabla_\theta \log \pi\left(y_w \mid x\right)}_{\text {increase likelihood of } y_w}-\underbrace{\nabla_\theta \log \pi\left(y_l \mid x\right)}_{\text {decrease likelihood of } y_l}]], \end{aligned} θLDPO(πθ;πref)=βE(x,yw,yl)D[higher weight when reward estimate is wrong  σ(r^θ(x,yl)r^θ(x,yw))[increase likelihood of yw θlogπ(ywx)decrease likelihood of yl θlogπ(ylx)]],
  • 启发思想:利用chatglm6b、s66b依次得到差一点的target、好一点的target的排序数据集,在这个排序数据集上对sft model直接进行dpo直接偏好学习,比直接rlhf更方便训练(绕过训练reward model的步骤)
# 数据样例
{"question": "我的女儿快两岁了好动是怎么回事,我的女儿快两岁了,还不会坐的时候,当大人抱着坐时(90度),她会把两条腿抬起来使劲,绷直腿和脚尖,累了就放下来歇一下,然后再绷,表情专注还会累得出汗,当时人们说是孩子长身体呢,没有在意。", 
"response_chosen": "你好,有的孩子可能会有些小问题,但是大多数孩子是无大碍的,因为这个年龄段正是孩子好动的年龄段,而且每个孩子的性格和秉性不一样,有的孩子天生就是活泼,但是也有极少数可能会有关,至于出汗多,晚上睡眠出汗多,那可能是缺乏钙或其它营养元素。可以给宝宝进行一下和缺钙有关的检查,微量元素和血铅镉化验也很重要。", 
"response_rejected": "这个现象可能是由于婴儿发育过程中的骨骼生长造成的。"}

结果:在 RLHF 用于拟合奖励模型的交叉熵损失也可用于直接微调 LLM。根据他们的基准测试,使用 DPO 的效率更高,而且在响应质量方面也通常优于 RLHF/PPO。

在这里插入图片描述

2. DPO实验

实验:

  • 论文中的实验:探索DPO在参考策略中权衡奖励最大化和 KL-divergence 最小化的效率;并且评估DPO在更大模型和更困难的 RLHF 任务 (包括摘要和对话) 上的性能
  • 我的简单实验:直接使用bloomz-560m模型(预训练权重选择Bloom-560m(pretrain),不是Bloomz-560m(pretrain+ft on xP3)),不需要reward_model,使用dpo直接偏好优化,loss如下图,仅100条偏好数据集就能较好收敛。

在这里插入图片描述

  • 可以使用trl库中的DPOTrainer库:
    • 数据:准备排序数据集(我在bloom模型上实验是用的100条公开数据集)
    • 原本基于RL的目标,现在通过BCE二元交叉熵来优化
    • 有监督损失函数,DPO优化的目标函数: max ⁡ π θ E π θ ( y ∣ x ) [ r ϕ ( x , y ) − β log ⁡ ∑ y π r e f exp ⁡ ( 1 β r ϕ ( x , y ) ) ⏟ f ( r ϕ , π r e f , β ) − β log ⁡ π θ ( y ∣ x ) π r e f ( y ∣ x ) ⏟ K L ] \max _{\pi_\theta} \mathbb{E}_{\pi_\theta(y \mid x)}[\underbrace{r_\phi(x, y)-\beta \log \sum_y \pi_{\mathrm{ref}} \exp \left(\frac{1}{\beta} r_\phi(x, y)\right)}_{f\left(r_\phi, \pi_{\mathrm{ref}}, \beta\right)}-\underbrace{\beta \log \frac{\pi_\theta(y \mid x)}{\pi_{\mathrm{ref}}(y \mid x)}}_{\mathrm{KL}}] πθmaxEπθ(yx)[f(rϕ,πref,β) rϕ(x,y)βlogyπrefexp(β1rϕ(x,y))KL βlogπref(yx)πθ(yx)]

实验结果分析:
(1)文中在多个数据集任务上进行对比实验(下图):

  • 使用偏好数据集 D = { x ( i ) , y w ( i ) , y l ( i ) } i = 1 N \mathcal{D}=\left\{x^{(i)}, y_w^{(i)}, y_l^{(i)}\right\}_{i=1}^N D={x(i),yw(i),yl(i)}i=1N
  • 左图(情感分类任务):在sentiment generation任务中,在所有的KL散度下,DPO都取得了最大的reward;
  • 右图(文本摘要任务):在DR summarization任务中,DPO也超过PPO(使用了GPT4进行评估),并且在不同的temperature下,鲁棒性也更好。

在这里插入图片描述

(2)结果分析(下图):

  • 左图:在单轮对话任务中,采用GPT-4计算win rate,DPO在temperature=0.75-1.00时,均取得了最好的win rate
  • 右图:DPO在训练过程中,表现出了较快的收敛速度,训练较为平稳;在不同temperature(实验分别取0.7和1.0)时DPO的胜率都是接近的,证明了DPO的可靠性。

在这里插入图片描述

3. 微软的PPO实践

论文:Contrastive Post-training Large Language Models on Data Curriculum
链接:https://arxiv.org/abs/2310.02263

核心:考虑到排序数据成本,他们直接默认GPT4 > ChatGPT > InstructGPT的效果顺序构造排序数据集,实验后得到以下结论:
(1)用DPO在 GPT4 vs InstructGPT 上训练的效果 > 直接在GPT-4数据精调的效果
(2)先在简单的pair上训练后,再在困难的pair上训练会有更好的效果

实验细节:
(1)训练参数:

  • model:llama-7b
  • deepspeed zero-3
  • temp=0.1

(2)实验结果:

  • 排序数据集使用GPT-4 vs. InstructGPT作为pair时效果最好(因为大部分gpt4生成的target都好于后者)
  • 用sft model训练DPO,比llama base model直接进行DPO效果好

在这里插入图片描述

4. DPO、PPO、BPO区别

BPO实验结果:在 VicunaEval 上使用 GPT-4 进行自动评估,BPO 能够大幅提升 ChatGPT、Claude 等模型的人类偏好,并助力 llama2-13b 模型大幅超过 llama2-70b 的版本。

在这里插入图片描述

(二)RLAIF模型

谷歌-RLAIF:Scaling Reinforcement Learning from Human Feedbak with AI Feadback
论文地址:https://arxiv.org/abs/2309.00267

[图片]

  • 核心:之前的是RLHF,这里将H(human)替换为AI给予reward;在Constitutional AI中就提出过RLAIF了(通过混合使用人类与AI偏好,组合Constitutional AI自我修正技术);deepmind贡献则是做实验比较RLAIF和RLHF在文本摘要任务的表现。
  • 解决的问题:收集高质量人类偏好标签的瓶颈问题。在 RLHF 中用于训练奖励模型的评分并不一定非要由人类提供,也可以使用 LLM(这里是 PaLM 2)生成。在人类评估者看来,用传统 RLHF 方法和 RLAIF 方法训练的模型得到的结果都差不多。

实验过程:
(1)通过LLM(实验直接使用了PaLM)对两个target按照一定的prompt确定所偏好的target(对应的prompt如下,few-shot):
在这里插入图片描述

(2)实验细节:

  • position bias:将两个target调换位置再判断一次,最后结果求平均值(经过LLM后得到的是target1和target2的概率)
  • 实验细节:labeling preference LLM=PaLM 2;temp=0,top-k的k=40
  • RL:使用reward model进行RL,RL没有使用复杂的PPO,而是使用更简单的A2C(Actor Critic)进行RL。

(3)实验结果:

  • 证明AI反馈的有效性,当比较RLAIF和RLHF摘要时,人类对两者都表示出相同的偏好。这意味着使用AI反馈进行训练可以达到与使用人类反馈相似的性能,从而为RLHF的可扩展性问题提供了一个潜在的解决方案
  • 提供一个潜在的替代方案:RLAIF使用现成的LLM来标记偏好,而不是依赖人类。研究发现,RLAIF和RLHF在改进方面产生了类似的结果。具体来说,对于摘要任务,人类评估者在大约70%的情况下更喜欢RLAIF和RLHF的输出,而不是基线的有监督微调模型。
  • 3个评测指标:AI Labeler Alignment、Pairwise Accuracy、WinRate

在这里插入图片描述

(三)ReST模型

论文:《Reinforced Self-Training (ReST) for Language Modeling》谷歌 deepmind
论文地址:https://arxiv.org/abs/2308.08998

核心:在之前人类对序列的偏好是使用学得的奖励函数来建模的。ReST 算法将典型 RL pipeline 的数据集增长(Grow)和策略改进(Improve)解耦成两个单独的离线阶段。避免了在线RL方法计算成本高、易受到攻击的问题

ReST优势:

  • 与在线 RL 相比,ReST 由于在 Improve step 中利用了 Grow step 的输出,因此计算负担大大减少;
  • 策略的质量不在受原始数据集质量的限制(如离线 RL),因为新的训练数据是从 Grow step 中经过采样得到的;
  • 检查数据质量并判断对齐变得更加容易,因为 Improve step 和 Grow step 这两个过程是解耦的;
  • ReST 简单、稳定,并且只有少量的超参数需要调优。

在这里插入图片描述

  • ReST能用于对齐 LLM 与人类偏好。ReST 使用一种采样方法来创建一个改进版数据集,然后在质量越来越高的子集上不断迭代训练,从而实现对奖励函数的微调。
  • ReST 的效率高于标准的在线 RLHF 方法(比如使用 PPO 的 RLHF),因为其能以离线方式生成训练数据集,但他们并未全面地比较这种方法与 InstructGPT 和 Llama 2 等中使用的标准 RLHF PPO 方法。

算法过程:
在这里插入图片描述

(四)Constitutional AI

论文:《Constitutional AI: Harmlessness from AI Feedback》
链接:https://arxiv.org/abs/2212.08073
在这里插入图片描述

(五)RRHF模型

RRHF(Rank Responses to align Human Feedback)
论文:RRHF: Rank Responses to Align Language Models with Human Feedback without tears 阿里、清华 NeurIPS 2023
链接:https://arxiv.org/pdf/2304.05302.pdf
核心:在RM数据上优化LM,让chosen回答的概率大于rejected回答的概率。在计算句子的条件概率后加上一个ranking loss

在这里插入图片描述

(2)数据实验:尝试了不同的数据采样策略:

  • 直接用开源RM的数据
  • 用自己的模型生成response,用开源RM进行排序,做出新的RM数据
  • 循环执行2,类似强化的思维不断靠自身采样到更好的答案

最后的结论也比较符合直接,是3>2>1。

(六)ReMax模型

论文:ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models 香港大学

核心:RL难点,将多步后的最终目标转为模型loss。传统RL中可能会导致学习不稳定,所以PPO中使用Actor-Critic网络(引入一个助教给模型的每一步打分)。作者提出用强化中的REINFORCE算法来代替PPO,去掉了Critic模型,但作者在实验中同样发现了梯度方差较大优化不稳定的问题,于是增加了一项bias来降低方差。

在这里插入图片描述
实验效果:经过ReMax的1.3b模型超过了只经过sft的llama2-7b模型。
在这里插入图片描述

(七)RSO模型

论文:Statistical rejection sampling improves preference optimization

Reference

[1] Rafael Rafailov, Archit Sharma, Eric Mitchell, StefanoErmon, Christopher D Manning, and Chelsea Finn.2023. Direct preference optimization: Your language model is secretly a reward model.arXiv preprintarXiv:2305.18290
[2] DPO(Direct Preference Optimization):LLM的直接偏好优化. 笔记
[3] https://github.com/LAION-AI/Open-Assistant/discussions/3347
[4] DPO——RLHF 的替代之《Direct Preference Optimization: Your Language Model is Secretly a Reward Model》论文阅读
[5] RLAIF细节分享&个人想法
[6] RLHF中的PPO算法原理及其实现
[7] InstructGPT pairwise logloss: https://arxiv.org/abs/2203.02155
[8] DPO:Direct Preference Optimization: Your Language Model is Secretly a Reward Model
[9] RLAIF:Scaling Reinforcement Learning from Human Feedbak with AI Feadback
[10] BPO:灵活的 Prompt 对齐优化技术
[11] LLM成功不可或缺的基石:RLHF及其替代技术
[12] Reinforced Self-Training (ReST) for Language Modeling翻译
[13] 大规模语言模型人类反馈对齐–RLAIF
[14] 谷歌团队提出用AI反馈强化学习 (RLAIF) ,替代人类进行偏好标注,这会对AI研究产生什么影响
[15] 大规模语言模型从理论到实践.第六章.复旦大学
[16] A Survey of Large Language Models.人大综述
[17] LLM Training: RLHF and Its Alternatives. SEBASTIAN RASCHKA, PHD
[18] Llama 2: Open Foundation and Fine-Tuned Chat Models:https://huggingface.co/papers/2307.09288#64c6961115bd12e5798b9e3f
[19] spinningup中文文档:https://spinningup.qiwihui.com/zh_CN/latest/
[20] RLHF中的「RL」是必需的吗?有人用二进制交叉熵直接微调LLM,效果更好
[21] RLHF的替代算法之DPO原理解析:从RLHF、Claude的RAILF到DPO、Zephyr
[22] DPO: Direct Preference Optimization训练目标推导
[23] 强化学习极简入门:通俗理解MDP、DP MC TC和Q学习、策略梯度、PPO
[24] KL-Divergence详解
[25] ChatGPT调研报告.哈工大实验室HIT-NLP
[26] 多 Agent 深度强化学习综述.《自动化学报》
[27] 一些RLHF的平替汇总
[28] Contrastive Post-training Large Language Models on Data Curriculum: https://arxiv.org/abs/2310.02263
[29] 理解Rejection Sampling: https://gaolei786.github.io/statistics/reject.html
[30] DeepMind新研究:ReST让大模型与人类偏好对齐,比在线RLHF更有效
[31] 影响PPO算法性能的10个关键技巧(附PPO算法简洁Pytorch实现)
[32] 论文阅读-MOSS-RLHF:PPO
[33] https://github.com/GanjinZero/RRHF
[34] 论文阅读-MOSS-RLHF:PPO
[35] https://github.com/OpenLMLab/MOSS-RLHF
[36] 添加链接描述影响PPO算法性能的10个关键技巧(附PPO算法简洁Pytorch实现)
[37] DPO——RLHF 的替代之《Direct Preference Optimization: Your Language Model is Secretly a Reward Model》论文阅读
[38] Llama 2:开源RHLF微调对话模型
[39] Secrets of RLHF in Large Language Models Part I: PPO
[40] 大模型训练的一些坑点和判断.包包
[41] Fine-tuning OpenAI GPT-3 using a custom reward model

基础:
[1] 强化学习极简入门:通俗理解MDP、DP MC TC和Q学习、策略梯度、PPO
[2] “StackLLaMA”: 用 RLHF 训练 LLaMA 的手把手教程.huggingface
[3] ChatGPT的RLHF:AI时代的“调速器”,让AI真正可用的关键
[4] 【他山之石】如何正确复现 Instruct GPT / RLHF?
[5] https://en.wikipedia.org/wiki/Reinforcement_learning_from_human_feedback
[7] Training language models to follow instructions with human feedback(2022)
[8] InstructGPT论文解读.李响
[9] ChatGPT训练三阶段与RLHF的威力.oneflow

在 InstructGPT 论文之前的这四篇论文中找到PPO的相关数学细节:
(1) 《Asynchronous Methods for Deep Reinforcement Learning》引入了策略梯度方法来替代基于深度学习的强化学习中的 Q 学习。
(2) 《Proximal Policy Optimization Algorithms》提出了一种基于修改版近端策略的强化学习流程,其数据效率和可扩展性均优于上面的基础版策略优化算法。
(3) 《Fine-Tuning Language Models from Human Preferences》阐释了 PPO 的概念以及对预训练语言模型的奖励学习,包括 KL 正则化,以防止策略偏离自然语言太远
(4) 《Learning to Summarize from Human Feedback》引入了现在常用的 RLHF 三步流程,后来的 InstructGPT 论文也使用了该流程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1302651.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在Linux本地部署openGauss开源数据管理系统并结合内网穿透公网访问

文章目录 前言1. Linux 安装 openGauss2. Linux 安装cpolar3. 创建openGauss主节点端口号公网地址4. 远程连接openGauss5. 固定连接TCP公网地址6. 固定地址连接测试 前言 openGauss是一款开源关系型数据库管理系统,采用木兰宽松许可证v2发行。openGauss内核深度融合…

恢复Django 项目

随笔记录 目录 1. 重建Mysql DB 2. 启动Django 项目 2.1 确保你的系统上已安装pip工具。你可以使用以下命令来检查pip是否已安装 2.2 安装Packages 2.2.1 安装Django 2.2.2 安装pymysql 2.2.3 安装 kafka 2.2.4 安装 requests 2.2.5 安装simplepro 2.2.6 安装libjp…

作为一个产品经理带你了解Axure的安装和基本使用

1.Axure的简介 Axure是一种强大的原型设计工具,它允许用户创建交互式的、高保真度的原型,以及进行用户体验设计和界面设计。Axure可以帮助设计师和产品经理快速创建和共享原型,以便团队成员之间进行沟通和反馈。Axure提供了丰富的交互组件和功…

体系化学习运筹学基础算法的实践和总结

文章目录 引言目标设计目标实践文章汇总经验总结一则预告 引言 眨眼间已经12月了,眼看着2023年马上要过完了。 女朋友最近总说,工作以后感觉时间过的好快。事实上,我也是这么认为的。年纪越大,越会担心35岁危机的降临。所以&…

Rocket MQ 架构介绍

文章目录 为什么选择Rocket MQ基本概念优点缺点架构图编程模型发送者发送消息固定步骤消费者消费消息固定步骤 为什么选择Rocket MQ Rocket MQ是阿帕奇顶级的开源项目,由阿里开发并开源。它的研发背景是Active MQ与Kafka不能很好的解决当时的业务场景。官网上是这么…

【rabbitMQ】Exchanges交换机

上一篇:springboot整合rabbitMQ模拟简单收发消息 https://blog.csdn.net/m0_67930426/article/details/134904766 本篇代码基于上一篇继续写 目录 Fanout 交换机 1. add queue 2. add Exchange 3.绑定队列 Direct 交换机 1. add queue 2. add Exchange 3.…

求职智能分析系统

本项目是一个基于Flask轻量级框架的计算机就业数据可视化分析平台。 采用echarts和ajax等技术进行数据展示和用户交互。

Mybatis是如何进行分页的?

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

【Linux】gdb-调试代码的工具

目录 一、概述 1.1 gdb是什么 1.2 为什么要使用gdb 二、gdb的简单使用 2.1 安装gdb 2.2 软件的debug版本和release版本 2.3 使用gdb 在之前的学习中,我们已经能够用vim编写和gcc/g编译代码了,下面来学习如何调试代码。 一、概述 1.1 gdb是什么 …

扩展学习|商业智能和分析:从大数据到大影响

文献来源:Chen H, Chiang R H L, Storey V C. Business intelligence and analytics: From big data to big impact[J]. MIS quarterly, 2012: 1165-1188. 下载链接:https://pan.baidu.com/s/1JoHcTbwdc1TPGnwXsL4kIA 提取码:a8uy 在不同的组…

【USRP】LFTX / LFRX

LFTX/LFRX 设备概述 LFTX 子板利用两个高速运算放大器来允许 0-30 MHz 的传输。该板仅接受实模式信号。LFTX 非常适合 HF 频段的应用,或使用外部前端来上变频和放大中间信号的应用。LFTX 的输出可以独立处理,也可以作为单个 I/Q 对进行处理。 主要特征…

基于SpringBoot+Vue会员制医疗预约服务管理信息系统(Java毕业设计)

点击咨询源码 大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的…

vue零基础

vue 与其他框架的对比 框架设计模式数据绑定灵活度文件模式复杂性学习曲线生态VueMVVM双向灵活单文件小缓完善ReactMVC单向较灵活all in js大陡丰富AngularMVC双向固定多文件较大较陡(Typescript)独立 更多对比细节:vue 官网:ht…

【人工智能 | 知识表示方法】状态空间法 语义网络,良好的知识表示是解题的关键!(笔记总结系列)

🤵‍♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…

漏洞复现--速达进存销管理系统任意文件上传

免责声明: 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

区块链扩容问题研究【06】

1.Plasma:Plasma 是一种基于以太坊区块链的 Layer2 扩容方案,它通过建立一个分层结构的区块链网络,将大量的交易放到子链上进行处理,从而提高了以太坊的吞吐量。Plasma 还可以通过智能合约实现跨链交易,使得不同的区块…

GoLong的学习之路,进阶,微服务之序列化协议,Protocol Buffers V3

这章是接上一章,使用RPC包,序列化中没有详细去讲,因为这一块需要看的和学习的地方很多。并且这一块是RPC中可以说是最重要的一块,也是性能的重要影响因子。今天这篇主要会讲其使用方式。 文章目录 Protocol Buffers V3 背景以及概…

编译 Flink代码

构建环境 JDK1.8以上和Maven 3.3.x可以构建Flink,但是不能正确地遮盖某些依赖项。Maven 3.2.5会正确创建库。所以这里使用为了减少问题选择 Maven3.2.5版本进行构建。要构建单元测试,请使用Java 8以上,以防止使用PowerMock运行器的单元测试失…

SpringBoot集成系列--RabbitMQ

文章目录 一、代码1、添加依赖2、配置RabbitMQ连接3、RabbitMQ配置4、创建生产者5、创建消费者6、测试 二、遇到的问题1、Channel shutdown2、收不到信息3、安装RabbitMQ&#xff0c;无法访问控制台访问 一、代码 1、添加依赖 在pom.xml文件中添加RabbitMQ的相关依赖 <de…

10天玩转Python第2天:python判断语句基础示例全面详解与代码练习

目录 1.课程之前1.1 复习和反馈1.2 作业1.3 今日内容1.4 字符串格式化的补充1.5 运算符1.5.1 逻辑运算符1.5.2 赋值运算符1.5.3 运算符优先 2.判断2.1 if 的基本结构2.1.1 基本语法2.1.2 代码案例2.1.3 练习 2.2 if else 结构2.2.1 基本语法2.2.2 代码案例2.2.3 练习 2.3 if 和…