竞赛保研 LSTM的预测算法 - 股票预测 天气预测 房价预测

news2024/12/24 15:53:43

0 简介

今天学长向大家介绍LSTM基础

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

    
    future_target = 72
    x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,
                                                     TRAIN_SPLIT, past_history,
                                                     future_target, STEP)
    x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],
                                                 TRAIN_SPLIT, None, past_history,
                                                 future_target, STEP)

划分数据集

    
​    train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
​    train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
​    

    val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
    val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()


  

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
​        plt.figure(figsize=(12, 6))
​        num_in = create_time_steps(len(history))
​        num_out = len(true_future)
​    

        plt.plot(num_in, np.array(history[:, 1]), label='History')
        plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',
               label='True Future')
        if prediction.any():
            plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',
                     label='Predicted Future')
        plt.legend(loc='upper left')
        plt.show()
    for x, y in train_data_multi.take(1):
      multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

    
​    multi_step_model = tf.keras.models.Sequential()
​    multi_step_model.add(tf.keras.layers.LSTM(32,
​                                              return_sequences=True,
​                                              input_shape=x_train_multi.shape[-2:]))
​    multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
​    multi_step_model.add(tf.keras.layers.Dense(72))
​    

    multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

    
    multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                              steps_per_epoch=EVALUATION_INTERVAL,
                                              validation_data=val_data_multi,
                                              validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import tensorflow as tf
    plt.rcParams['font.sans-serif']=['SimHei']#显示中文
    plt.rcParams['axes.unicode_minus']=False#显示负号


def load_data():
test_x_batch = np.load(r’test_x_batch.npy’,allow_pickle=True)
test_y_batch = np.load(r’test_y_batch.npy’,allow_pickle=True)
return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):
    cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanh
    return cell

#定义lstm网络
def lstm_net(x,w,b,num_neurons):
    #将输入变成一个列表,列表的长度及时间步数
    inputs = tf.unstack(x,8,1)
    cells = [lstm_cell(units=n) for n in num_neurons]
    stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)
    outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)
    return tf.matmul(outputs[-1],w) + b

#超参数
num_neurons = [32,32,64,64,128,128]

#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))

#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)

#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())

if __name__ == '__main__':

    #开启交互式Session
    sess = tf.InteractiveSession()
    saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')

    #载入数据
    test_x,test_y = load_data()

    #预测
    predicts = sess.run(pred,feed_dict={x:test_x})
    predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准

    #可视化
    plt.plot(predicts,'r',label='预测曲线')
    plt.plot(test_y,'g',label='真实曲线')
    plt.xlabel('第几天/days')
    plt.ylabel('开盘价(归一化)')
    plt.title('股票开盘价曲线预测(测试集)')
    plt.legend()
	plt.show()
    #关闭会话
    sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

    
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import torch
    import torch.nn as nn
    from sklearn.preprocessing import MinMaxScaler
    import os


# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4 # 序列长度
n_feature = 12 # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。

# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)
 
trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):
    tmp_x = data[i:i+seq_length, :]
    tmp_y = data[i+seq_length, :]
    trainData_x.append(tmp_x)
    trainData_y.append(tmp_y)
 
# model
class Net(nn.Module):
    def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
        super(Net, self).__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.n_layer = n_layer
        self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)
 
    def forward(self, x):
        _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                      # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                      # n_direction根据是“否为双向”取值为1或2
        h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
        h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
        return h_out
 
train = True
if train:
    model = Net()
    loss_func = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    # train
    for epoch in range(EPOCH):
        total_loss = 0
        for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
            X = torch.tensor(X).float()
            X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
            output = model(X)       # output's shape (1,12)
            output = torch.squeeze(output)
            loss = loss_func(output, torch.tensor(trainData_y[iteration]))
            optimizer.zero_grad()   # clear gradients for this training iteration
            loss.backward()         # computing gradients
            optimizer.step()        # update weights
            total_loss += loss
 
        if (epoch+1) % 20 == 0:
            print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
    # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
    torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
 
else:
    # model = torch.load('flight_model.pth')
    model = Net()
    checkpoint = torch.load('checkpoint.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])
 
# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)
    X = torch.tensor(X).float()
    X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
    output = model(X)             # output's shape (1,12)
    output = torch.squeeze(output)
    predict.append(output.data.numpy())
 
# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')
 
data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')
 
plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1302558.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Qt的登录页面设计

题目: 完善对话框,点击登录对话框,如果账号和密码匹配,则弹出信息对话框,给出提示”登录成功“,提供一个Ok按钮,用户点击Ok后,关闭登录界面,跳转到其他界面 如果账号和…

leetcode 股票DP系列 总结篇

121. 买卖股票的最佳时机 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。 只能进行一次交易 很简单&#xff0c;只需边遍历边记录最小值即可。 class Solution { public:int maxProfit(vector<int>& prices) {int res …

Java:字符流 文件输出 与 读入 方法

Java&#xff1a;字节流 文件输出与读入方法 并 实现文件拷贝 文章目录 字符流FileReaderFileWrite 字符流 字符流底层就是字节流。 字符流 字节流 字符集 特点&#xff1a; 输入流&#xff1a;一次读入一个字节&#xff0c;遇到中文时&#xff0c;一次读多个字节。 输出流…

我的 CSDN 三周年创作纪念日:2020-12-12

本人大叔一枚&#xff0c;自1992年接触电脑&#xff0c;持续了30年的业余电脑发烧爱好者&#xff0c;2022年CSDN博客之星Top58&#xff0c;阿里云社区“乘风者计划”专家博主。自某不知名财校毕业后进入国有大行工作至今&#xff0c;先后任职于某分行信息科技部、电子银行部、金…

六级翻译之印章

好像大房子挺难得 三段式 1Since ancient from now&#xff0c;seals have been a symbol of power and certerfiction of identity.seals not only practical but also is a form of art.Seal is an ancient art combining with manafutuer of crafting and desgin of…

基于SSM的健身房预约系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

2023Python自动化测试5种模型(建议收藏)

1、前言 在自动化测试中&#xff0c;我们往往将自动化脚本都归纳属于哪种框架模型&#xff0c;比如关键字驱动模型等。 本篇将列举实际自动化测试中&#xff0c;Python 自动化测试的五种模型&#xff1a;线性模型、模块化驱动模型、数据驱动模型、关键字驱动模型、行为驱动模…

访问NFS存储及自动挂载

本章主要介绍NFS客户端的使用 创建NFS服务器并通过NFS共享一个目录 在客户端上访问NFS共享的目录 自动挂载的配置和使用 1 访问NFS存储 前面介绍了本地存储&#xff0c;本章就来介绍如何使用网络上的存储设备。NFS即网络文件系统&#xff0c;所实现的是 Linux 和 Linux 之间的…

AI降重软件,AI降重后原创高质量文章

在当今信息爆炸的时代&#xff0c;写作与创作的重要性日益凸显。随着大量内容的涌现&#xff0c;文章降重成为了许多作者和内容创作者的一大问题。本文将专心分享该软件的优势&#xff0c;并为广大用户推荐几款好用的AI降重软件。 AI降重使用场景 AI降重技术利用机器学习算法和…

扔掉xshell,基于 QT 实现一个串口命令行工具(带源码)

背景 xshell 带有支持串口的命令行能力&#xff0c; 可以方便的和下位机用命令进行交互&#xff0c;如下图所示&#xff1a; msh > msh > msh >version\ | / - RT - Thread Operating System/ | \ 3.1.3 build Nov 7 20232006 - 2019 Copyright by rt-thre…

《opencv实用探索·十四》VideoCapture播放视频和视像头调用

1、VideoCapture播放视频 #include <opencv2/opencv.hpp> #include <iostream>using namespace std; using namespace cv;int main() {// 定义相关VideoCapture对象VideoCapture capture;// 打开视频文件capture.open("1.avi");// 判断视频流读取是否正…

聚首引领行业风潮!聚首品牌联动资源价值平台发布会正式启航

2023年12月10日&#xff0c;由杭州建筑装饰学会、浙江聚首联优材料科技有限公司主办&#xff0c;天尚设计集团、公和设计集团、铭扬工程设计集团、地标设计集团、上宸工程设计集团、华坤建筑设计院、广厦建筑设计研究院、上海传承博华建筑规划设计院、航冠工程设计院、浙江鸿能…

控制台打印如来佛图像

代码 System.out.println(" _ooOoo_ \n"" o8888888o \n"" 88 \".\" 88 …

Java王者荣耀火柴人

主要功能 键盘W,A,S,D键&#xff1a;控制玩家上下左右移动。按钮一&#xff1a;控制英雄发射一个矩形攻击红方小兵。按钮控制英雄发射魅惑技能&#xff0c;伤害小兵并让小兵停止移动。技能三&#xff1a;攻击多个敌人并让小兵停止移动。普攻&#xff1a;对小兵造成基础伤害。小…

【人工智能 | 知识表示】问题规约法 谓词/符号逻辑,良好的知识表示是解题的关键!(笔记总结系列)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

【算法优选】 动态规划之路径问题——贰

文章目录 &#x1f38b;前言&#x1f332;[下降最小路径和](https://leetcode.cn/problems/minimum-path-sum/)&#x1f6a9;题目描述&#x1f6a9;算法思路&#xff1a;&#x1f6a9;代码实现 &#x1f38d;[最小路径和](https://leetcode.cn/problems/minimum-path-sum/)&…

12.11

1.q&#xff0c;w&#xff0c;e亮led1&#xff0c;2&#xff0c;3&#xff1b; a&#xff0c;s&#xff0c;d灭led1&#xff0c;2&#xff0c;3&#xff1b; main.c #include "uar1.h"#include "led.h"void delay(int ms){int i,j;for(i0;i<ms;i){for…

计算机科学与技术认识实习【报告】

一、实习目的 此次认识实习主要面对计算机科学与技术专业的同学&#xff0c;了解专业在未来的发展趋势&#xff0c;通过观看公司的介绍视频和技术发展情况招聘信息后的感想和学习体会等多种方式&#xff0c;使我们了解本专业相关领域的发展现状&#xff0c;让我们在校园内课堂上…

(纯原创)基于JavaWeb的宠物领养商城(详细源码以及开发设计报告)

摘要 本宠物领养系统以MVC分层为原则&#xff0c;数据持久化使用Mybatis&#xff0c;数据库使用MySQL&#xff0c;这些技术目前相对比较成熟&#xff0c;方便系统的维护与扩展 商城系统包括了宠物领养、用户注册、用户登录、商品查询、商品添加到购物车、删除商品等几大功能…

Java LeetCode篇-二叉树经典解法(实现:判断平衡二叉树、找两个节点最近的祖先等)

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 平衡二叉树 1.1 实现判断平衡二叉树的思路 1.2 代码实现判断平衡二叉树 2.0 二叉树的层序遍历 2.1 实现二叉树层序遍历的思路 2.2 代码实现二叉树层序遍历 3.0 …