RE2文本匹配调优实战

news2024/11/20 0:28:50

引言

在RE2文本匹配实战的最后,博主说过会结合词向量以及其他技巧来对效果进行调优,本篇文章对整个过程进行详细记录。其他文本匹配系列实战后续也会进行类似的调优,方法是一样的,不再赘述。

本文所用到的词向量可以在Gensim训练中文词向量实战文末找到,免费提供下载。

完整代码在文末。

数据准备

本次用的是LCQMC通用领域问题匹配数据集,它已经分好了训练、验证和测试集。

我们通过pandas来加载一下。

import pandas as pd

train_df = pd.read_csv(data_path.format("train"), sep="\t", header=None, names=["sentence1", "sentence2", "label"])

train_df.head()

image-20230903075315567

数据是长这样子的,有两个待匹配的句子,标签是它们是否相似。

下面用jieba来处理每个句子。

def tokenize(sentence):
    return list(jieba.cut(sentence))

train_df.sentence1 = train_df.sentence1.apply(tokenize)
train_df.sentence2 = train_df.sentence2.apply(tokenize)

image-20230903075752210

得到分好词的数据后,我们就可以得到整个训练语料库中的所有token:

train_sentences = train_df.sentence1.to_list() + train_df.sentence2.to_list()
train_sentences[0]
['喜欢', '打篮球', '的', '男生', '喜欢', '什么样', '的', '女生']

现在就可以来构建词表了,我们沿用之前的代码:

class Vocabulary:
    """Class to process text and extract vocabulary for mapping"""

    def __init__(self, token_to_idx: dict = None, tokens: list[str] = None) -> None:
        """
        Args:
            token_to_idx (dict, optional): a pre-existing map of tokens to indices. Defaults to None.
            tokens (list[str], optional): a list of unique tokens with no duplicates. Defaults to None.
        """

        assert any(
            [tokens, token_to_idx]
        ), "At least one of these parameters should be set as not None."
        if token_to_idx:
            self._token_to_idx = token_to_idx
        else:
            self._token_to_idx = {}
            if PAD_TOKEN not in tokens:
                tokens = [PAD_TOKEN] + tokens

            for idx, token in enumerate(tokens):
                self._token_to_idx[token] = idx

        self._idx_to_token = {idx: token for token, idx in self._token_to_idx.items()}

        self.unk_index = self._token_to_idx[UNK_TOKEN]
        self.pad_index = self._token_to_idx[PAD_TOKEN]

    @classmethod
    def build(
        cls,
        sentences: list[list[str]],
        min_freq: int = 2,
        reserved_tokens: list[str] = None,
    ) -> "Vocabulary":
        """Construct the Vocabulary from sentences

        Args:
            sentences (list[list[str]]): a list of tokenized sequences
            min_freq (int, optional): the minimum word frequency to be saved. Defaults to 2.
            reserved_tokens (list[str], optional): the reserved tokens to add into the Vocabulary. Defaults to None.

        Returns:
            Vocabulary: a Vocubulary instane
        """

        token_freqs = defaultdict(int)
        for sentence in tqdm(sentences):
            for token in sentence:
                token_freqs[token] += 1

        unique_tokens = (reserved_tokens if reserved_tokens else []) + [UNK_TOKEN]
        unique_tokens += [
            token
            for token, freq in token_freqs.items()
            if freq >= min_freq and token != UNK_TOKEN
        ]
        return cls(tokens=unique_tokens)

    def __len__(self) -> int:
        return len(self._idx_to_token)

    def __iter__(self):
        for idx, token in self._idx_to_token.items():
            yield idx, token

    def __getitem__(self, tokens: list[str] | str) -> list[int] | int:
        """Retrieve the indices associated with the tokens or the index with the single token

        Args:
            tokens (list[str] | str): a list of tokens or single token

        Returns:
            list[int] | int: the indices or the single index
        """
        if not isinstance(tokens, (list, tuple)):
            return self._token_to_idx.get(tokens, self.unk_index)
        return [self.__getitem__(token) for token in tokens]

    def lookup_token(self, indices: list[int] | int) -> list[str] | str:
        """Retrive the tokens associated with the indices or the token with the single index

        Args:
            indices (list[int] | int): a list of index or single index

        Returns:
            list[str] | str: the corresponding tokens (or token)
        """

        if not isinstance(indices, (list, tuple)):
            return self._idx_to_token[indices]

        return [self._idx_to_token[index] for index in indices]

    def to_serializable(self) -> dict:
        """Returns a dictionary that can be serialized"""
        return {"token_to_idx": self._token_to_idx}

    @classmethod
    def from_serializable(cls, contents: dict) -> "Vocabulary":
        """Instantiates the Vocabulary from a serialized dictionary


        Args:
            contents (dict): a dictionary generated by `to_serializable`

        Returns:
            Vocabulary: the Vocabulary instance
        """
        return cls(**contents)

    def __repr__(self):
        return f"<Vocabulary(size={len(self)})>"

主要修改是增加:

def __iter__(self):
    for idx, token in self._idx_to_token.items():
        yield idx, token

使得这个词表是可迭代的,其他代码参考完整代码。

模型实现

模型实现见RE2文本匹配实战,没有任何修改。

模型训练

主要优化在模型训练过程中,首先我们训练得更久——总epochs数设成50,同时我们引入早停策略,当模型不再优化则无需继续训练。

早停策略

class EarlyStopper:
    def __init__(self, patience: int = 5, mode: str = "min") -> None:
        self.patience = patience
        self.counter = 0
        self.best_value = 0.0
        if mode not in {"min", "max"}:
            raise ValueError(f"mode {mode} is unknown!")
        self.mode = mode

    def step(self, value: float) -> bool:
        if self.is_better(value):
            self.best_value = value
            self.counter = 0
        else:
            self.counter += 1
            if self.counter >= self.patience:
                return True

        return False
    
    def is_better(self, a: float) -> bool:
        if self.mode == "min":
            return a < self.best_value
        return a > self.best_value

很简单,如果调用step()返回True,则触发了早停;通过best_value保存训练过程中的最佳指标,同时技术清零;其中patience表示最多忍耐模型不再优化次数;

学习率调度

当模型不再收敛时,还可以尝试减少学习率。这里引入的ReduceLROnPlateau就可以完成这件事。

lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0)

for epoch in range(args.num_epochs):
    train(train_data_loader, model, criterion, optimizer, args.grad_clipping)

    acc, p, r, f1 = evaluate(dev_data_loader, model)
	# 当准确率不再下降,则降低学习率
    lr_scheduler.step(acc)

增加梯度裁剪值

梯度才才裁剪值增加到10.0

载入预训练词向量

最重要的就是载入预训练词向量了:

def load_embedings(
    vocab, embedding_path: str, embedding_dim: int = 300, lower: bool = True
) -> list[list[float]]:
    word2vec = KeyedVectors.load_word2vec_format(embedding_path)
    embedding = np.random.randn(len(vocab), embedding_dim)
    load_count = 0
    for i, word in vocab:
        if lower:
            word = word.lower()
        if word in word2vec:
            embedding[i] = word2vec[word]
            load_count += 1
    print(f"loaded word count: {load_count}")
    return embedding.tolist()

首先加载word2vec文件;接着随机初始化一个词表大小的词向量;然后遍历(见上文)词表中的标记,如果标记出现在word2vec中,则使用word2vec的嵌入,并且计数加1;最后打印出工加载的标记数。

设定随机种子

def set_random_seed(seed: int = 666) -> None:
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

为了让结果可复现,还实现了设定随机种子, 本文用的是 set_random_seed(seed=47),最终能达到测试集上84.6%的准确率,实验过程中碰到了85.0%的准确率,但没有复现。

训练

训练参数:

Arguments : Namespace(dataset_csv='text_matching/data/lcqmc/{}.txt', vectorizer_file='vectorizer.json', model_state_file='model.pth', pandas_file='dataframe.{}.pkl', save_dir='/home/yjw/workspace/nlp-in-action-public/text_matching/re2/model_storage', reload_model=False, cuda=True, learning_rate=0.0005, batch_size=128, num_epochs=50, max_len=50, embedding_dim=300, hidden_size=150, encoder_layers=2, num_blocks=2, kernel_sizes=[3], dropout=0.2, min_freq=2, project_func='linear', grad_clipping=10.0, num_classes=2)

主要训练代码:

train_data_loader = DataLoader(
    train_dataset, batch_size=args.batch_size, shuffle=True
)
dev_data_loader = DataLoader(dev_dataset, batch_size=args.batch_size)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size)

optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
criterion = nn.CrossEntropyLoss()

lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0)

best_value = 0.0

early_stopper = EarlyStopper(mode="max")

for epoch in range(args.num_epochs):
    train(train_data_loader, model, criterion, optimizer, args.grad_clipping)

    acc, p, r, f1 = evaluate(dev_data_loader, model)

    lr_scheduler.step(acc)

    if acc > best_value:
        best_value = acc
        print(f"Save model with best acc :{acc:4f}")
        torch.save(model.state_dict(), model_save_path)

    if early_stopper.step(acc):
        print(f"Stop from early stopping.")
        break

    acc, p, r, f1 = evaluate(dev_data_loader, model)

    print(
        f"EVALUATE [{epoch+1}/{args.num_epochs}]  accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}"
    )

model.eval()

acc, p, r, f1 = evaluate(test_data_loader, model)
print(f"TEST accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")

model.load_state_dict(torch.load(model_save_path))
model.to(device)
acc, p, r, f1 = evaluate(test_data_loader, model)
print(
    f"TEST[best score] accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}"
)

输出:

Arguments : Namespace(dataset_csv='text_matching/data/lcqmc/{}.txt', vectorizer_file='vectorizer.json', model_state_file='model.pth', pandas_file='dataframe.{}.pkl', save_dir='/home/yjw/workspace/nlp-in-action-public/text_matching/re2/model_storage', reload_model=False, cuda=True, learning_rate=0.0005, batch_size=128, num_epochs=50, max_len=50, embedding_dim=300, hidden_size=150, encoder_layers=2, num_blocks=2, kernel_sizes=[3], dropout=0.2, min_freq=2, project_func='linear', grad_clipping=10.0, num_classes=2)
Using device: cuda:0.
Loads cached dataframes.
Loads vectorizer file.
set_count: 4789
Model: RE2(
  (embedding): Embedding(
    (embedding): Embedding(4827, 300, padding_idx=0)
    (dropout): Dropout(p=0.2, inplace=False)
  )
  (connection): AugmentedResidualConnection()
  (blocks): ModuleList(
    (0): ModuleDict(
      (encoder): Encoder(
        (encoders): ModuleList(
          (0): Conv1d(
            (model): ModuleList(
              (0): Sequential(
                (0): Conv1d(300, 150, kernel_size=(3,), stride=(1,), padding=(1,))
                (1): GeLU()
              )
            )
          )
          (1): Conv1d(
            (model): ModuleList(
              (0): Sequential(
                (0): Conv1d(150, 150, kernel_size=(3,), stride=(1,), padding=(1,))
                (1): GeLU()
              )
            )
          )
        )
        (dropout): Dropout(p=0.2, inplace=False)
      )
      (alignment): Alignment(
        (projection): Sequential(
          (0): Dropout(p=0.2, inplace=False)
          (1): Linear(
            (model): Sequential(
              (0): Linear(in_features=450, out_features=150, bias=True)
              (1): GeLU()
            )
          )
        )
      )
      (fusion): Fusion(
        (dropout): Dropout(p=0.2, inplace=False)
        (fusion1): Linear(
          (model): Sequential(
            (0): Linear(in_features=900, out_features=150, bias=True)
            (1): GeLU()
          )
        )
        (fusion2): Linear(
          (model): Sequential(
            (0): Linear(in_features=900, out_features=150, bias=True)
            (1): GeLU()
          )
        )
        (fusion3): Linear(
          (model): Sequential(
            (0): Linear(in_features=900, out_features=150, bias=True)
            (1): GeLU()
          )
        )
        (fusion): Linear(
          (model): Sequential(
            (0): Linear(in_features=450, out_features=150, bias=True)
            (1): GeLU()
          )
        )
      )
    )
    (1): ModuleDict(
      (encoder): Encoder(
        (encoders): ModuleList(
          (0): Conv1d(
            (model): ModuleList(
              (0): Sequential(
                (0): Conv1d(450, 150, kernel_size=(3,), stride=(1,), padding=(1,))
                (1): GeLU()
              )
            )
          )
          (1): Conv1d(
            (model): ModuleList(
              (0): Sequential(
                (0): Conv1d(150, 150, kernel_size=(3,), stride=(1,), padding=(1,))
                (1): GeLU()
              )
            )
          )
        )
        (dropout): Dropout(p=0.2, inplace=False)
      )
      (alignment): Alignment(
        (projection): Sequential(
          (0): Dropout(p=0.2, inplace=False)
          (1): Linear(
            (model): Sequential(
              (0): Linear(in_features=600, out_features=150, bias=True)
              (1): GeLU()
            )
          )
        )
      )
      (fusion): Fusion(
        (dropout): Dropout(p=0.2, inplace=False)
        (fusion1): Linear(
          (model): Sequential(
            (0): Linear(in_features=1200, out_features=150, bias=True)
            (1): GeLU()
          )
        )
        (fusion2): Linear(
          (model): Sequential(
            (0): Linear(in_features=1200, out_features=150, bias=True)
            (1): GeLU()
          )
        )
        (fusion3): Linear(
          (model): Sequential(
            (0): Linear(in_features=1200, out_features=150, bias=True)
            (1): GeLU()
          )
        )
        (fusion): Linear(
          (model): Sequential(
            (0): Linear(in_features=450, out_features=150, bias=True)
            (1): GeLU()
          )
        )
      )
    )
  )
  (pooling): Pooling()
  (prediction): Prediction(
    (dense): Sequential(
      (0): Dropout(p=0.2, inplace=False)
      (1): Linear(
        (model): Sequential(
          (0): Linear(in_features=600, out_features=150, bias=True)
          (1): GeLU()
        )
      )
      (2): Dropout(p=0.2, inplace=False)
      (3): Linear(
        (model): Sequential(
          (0): Linear(in_features=150, out_features=2, bias=True)
          (1): GeLU()
        )
      )
    )
  )
)
New model
 TRAIN iter=1866 loss=0.436723: 100%|██████████| 1866/1866 [01:55<00:00, 16.17it/s]
100%|██████████| 69/69 [00:01<00:00, 40.39it/s]
Save model with best accuracy :0.771302
EVALUATE [2/50]  accuracy=0.771 precision=0.800 recal=0.723 f1 score=0.7598
 TRAIN iter=1866 loss=0.403501: 100%|██████████| 1866/1866 [01:57<00:00, 15.93it/s]
100%|██████████| 69/69 [00:01<00:00, 45.32it/s]
Save model with best accuracy :0.779709
EVALUATE [3/50]  accuracy=0.780 precision=0.785 recal=0.770 f1 score=0.7777
 TRAIN iter=1866 loss=0.392297: 100%|██████████| 1866/1866 [01:45<00:00, 17.64it/s]
100%|██████████| 69/69 [00:01<00:00, 43.32it/s]
Save model with best accuracy :0.810838
EVALUATE [4/50]  accuracy=0.811 precision=0.804 recal=0.822 f1 score=0.8130
 TRAIN iter=1866 loss=0.383858: 100%|██████████| 1866/1866 [01:46<00:00, 17.52it/s]
100%|██████████| 69/69 [00:01<00:00, 42.72it/s]
EVALUATE [5/50]  accuracy=0.810 precision=0.807 recal=0.816 f1 score=0.8113
 TRAIN iter=1866 loss=0.374672: 100%|██████████| 1866/1866 [01:46<00:00, 17.55it/s]
100%|██████████| 69/69 [00:01<00:00, 44.62it/s]
Save model with best accuracy :0.816746
EVALUATE [6/50]  accuracy=0.817 precision=0.818 recal=0.815 f1 score=0.8164
 TRAIN iter=1866 loss=0.369444: 100%|██████████| 1866/1866 [01:46<00:00, 17.52it/s]
100%|██████████| 69/69 [00:01<00:00, 45.27it/s]
EVALUATE [7/50]  accuracy=0.815 precision=0.800 recal=0.842 f1 score=0.8203
 TRAIN iter=1866 loss=0.361552: 100%|██████████| 1866/1866 [01:47<00:00, 17.39it/s]
100%|██████████| 69/69 [00:01<00:00, 42.68it/s]
Save model with best accuracy :0.824926
EVALUATE [8/50]  accuracy=0.825 precision=0.820 recal=0.832 f1 score=0.8262
 TRAIN iter=1866 loss=0.358231: 100%|██████████| 1866/1866 [01:50<00:00, 16.95it/s]
100%|██████████| 69/69 [00:01<00:00, 42.80it/s]
Save model with best accuracy :0.827312
EVALUATE [9/50]  accuracy=0.827 precision=0.841 recal=0.808 f1 score=0.8239
 TRAIN iter=1866 loss=0.354693: 100%|██████████| 1866/1866 [01:55<00:00, 16.19it/s]
100%|██████████| 69/69 [00:01<00:00, 36.67it/s]
Save model with best accuracy :0.830607
EVALUATE [10/50]  accuracy=0.831 precision=0.818 recal=0.851 f1 score=0.8340
 TRAIN iter=1866 loss=0.351138: 100%|██████████| 1866/1866 [02:02<00:00, 15.23it/s]
100%|██████████| 69/69 [00:02<00:00, 32.18it/s]
Save model with best accuracy :0.837991
EVALUATE [11/50]  accuracy=0.838 precision=0.840 recal=0.836 f1 score=0.8376
 TRAIN iter=1866 loss=0.348067: 100%|██████████| 1866/1866 [01:52<00:00, 16.57it/s]
100%|██████████| 69/69 [00:01<00:00, 42.16it/s]
EVALUATE [12/50]  accuracy=0.836 precision=0.836 recal=0.837 f1 score=0.8365
 TRAIN iter=1866 loss=0.343886: 100%|██████████| 1866/1866 [02:09<00:00, 14.43it/s]
100%|██████████| 69/69 [00:02<00:00, 32.44it/s]
Save model with best accuracy :0.839127
EVALUATE [13/50]  accuracy=0.839 precision=0.838 recal=0.841 f1 score=0.8395
 TRAIN iter=1866 loss=0.341275: 100%|██████████| 1866/1866 [02:17<00:00, 13.60it/s]
100%|██████████| 69/69 [00:02<00:00, 32.74it/s]
Save model with best accuracy :0.842649
EVALUATE [14/50]  accuracy=0.843 precision=0.841 recal=0.845 f1 score=0.8431
 TRAIN iter=1866 loss=0.339279: 100%|██████████| 1866/1866 [02:15<00:00, 13.74it/s]
100%|██████████| 69/69 [00:01<00:00, 42.64it/s]
Save model with best accuracy :0.846399
EVALUATE [15/50]  accuracy=0.846 precision=0.858 recal=0.831 f1 score=0.8440
 TRAIN iter=1866 loss=0.338046: 100%|██████████| 1866/1866 [01:49<00:00, 17.00it/s]
100%|██████████| 69/69 [00:01<00:00, 42.64it/s]
EVALUATE [16/50]  accuracy=0.844 precision=0.844 recal=0.843 f1 score=0.8436
 TRAIN iter=1866 loss=0.334223: 100%|██████████| 1866/1866 [01:59<00:00, 15.60it/s]
100%|██████████| 69/69 [00:02<00:00, 32.00it/s]
EVALUATE [17/50]  accuracy=0.844 precision=0.836 recal=0.855 f1 score=0.8455
 TRAIN iter=1866 loss=0.331690: 100%|██████████| 1866/1866 [02:04<00:00, 15.01it/s]
100%|██████████| 69/69 [00:01<00:00, 42.16it/s]
EVALUATE [18/50]  accuracy=0.844 precision=0.834 recal=0.860 f1 score=0.8465
 TRAIN iter=1866 loss=0.328178: 100%|██████████| 1866/1866 [01:49<00:00, 16.98it/s]
100%|██████████| 69/69 [00:01<00:00, 42.50it/s]
EVALUATE [19/50]  accuracy=0.845 precision=0.842 recal=0.849 f1 score=0.8454
 TRAIN iter=1866 loss=0.326720: 100%|██████████| 1866/1866 [01:48<00:00, 17.12it/s]
100%|██████████| 69/69 [00:01<00:00, 41.95it/s]
Save model with best accuracy :0.847421
EVALUATE [20/50]  accuracy=0.847 precision=0.844 recal=0.853 f1 score=0.8482
 TRAIN iter=1866 loss=0.324938: 100%|██████████| 1866/1866 [01:49<00:00, 16.99it/s]
100%|██████████| 69/69 [00:01<00:00, 43.29it/s]
EVALUATE [21/50]  accuracy=0.845 precision=0.842 recal=0.848 f1 score=0.8452
 TRAIN iter=1866 loss=0.322923: 100%|██████████| 1866/1866 [01:48<00:00, 17.24it/s]
100%|██████████| 69/69 [00:01<00:00, 43.47it/s]
EVALUATE [22/50]  accuracy=0.847 precision=0.844 recal=0.852 f1 score=0.8480
 TRAIN iter=1866 loss=0.322150: 100%|██████████| 1866/1866 [01:46<00:00, 17.51it/s]
100%|██████████| 69/69 [00:01<00:00, 42.77it/s]
Save model with best accuracy :0.849920
EVALUATE [23/50]  accuracy=0.850 precision=0.839 recal=0.866 f1 score=0.8523
 TRAIN iter=1866 loss=0.320312: 100%|██████████| 1866/1866 [01:49<00:00, 17.06it/s]
100%|██████████| 69/69 [00:01<00:00, 41.91it/s]
EVALUATE [24/50]  accuracy=0.847 precision=0.843 recal=0.853 f1 score=0.8479
 TRAIN iter=1866 loss=0.319144: 100%|██████████| 1866/1866 [01:49<00:00, 17.00it/s]
100%|██████████| 69/69 [00:01<00:00, 42.76it/s]
EVALUATE [25/50]  accuracy=0.849 precision=0.841 recal=0.861 f1 score=0.8511
 TRAIN iter=1866 loss=0.318375: 100%|██████████| 1866/1866 [01:48<00:00, 17.20it/s]
100%|██████████| 69/69 [00:01<00:00, 43.52it/s]
EVALUATE [26/50]  accuracy=0.850 precision=0.843 recal=0.859 f1 score=0.8512
 TRAIN iter=1866 loss=0.317125: 100%|██████████| 1866/1866 [01:48<00:00, 17.17it/s]
100%|██████████| 69/69 [00:01<00:00, 42.54it/s]
EVALUATE [27/50]  accuracy=0.848 precision=0.841 recal=0.857 f1 score=0.8490
 TRAIN iter=1866 loss=0.316708: 100%|██████████| 1866/1866 [01:49<00:00, 17.03it/s]
100%|██████████| 69/69 [00:01<00:00, 42.04it/s]
Stop from early stopping.
100%|██████████| 98/98 [00:02<00:00, 38.74it/s]
TEST accuracy=0.846 precision=0.792 recal=0.938 f1 score=0.8587
100%|██████████| 98/98 [00:02<00:00, 39.47it/s]
TEST[best f1] accuracy=0.846 precision=0.793 recal=0.939 f1 score=0.8594

一些结论

  • 采用字向量而不是词向量,经实验比较自训练的词向量和字向量,后者效果更好;

  • 有38个标记没有被word2vec词向量覆盖;

  • 准确率达到84.6;

  • 超过了网上常见的84.0;

  • 训练了近30轮;

  • 词向量word2vec仅训练了5轮,未调参,显然不是最优的,但也够用;

  • RE2模型应该还能继续优化,但没必要花太多时间调参;

从RE2模型开始,后续就进入预训练模型,像Sentence-BERT、SimCSE等。

但在此之前,计划先巩固下预训练模型的知识,因此文本匹配系列暂时不更新,等预训练模型更新差不多之后再更新。

完整代码

https://github.com/nlp-greyfoss/nlp-in-action-public/tree/master/text_matching/re2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1302312.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何用CHAT写方案?

问CHAT&#xff1a;帮我写一份航空无动力乐园的可执行方案 CHAT回复&#xff1a; 方案一&#xff1a;概念及地点筛选 航空无动力乐园是指以航空运动为主题&#xff0c;利用自然地形与风力进行滑翔、跳伞等无动力航空运动的户外休闲娱乐乐园。鉴于此&#xff0c;首需要确定乐园…

裸机单片机适用的软件架构

单片机通常分为三种工作模式&#xff0c;分别是 1、前后台顺序执行法 2、操作系统 3、时间片轮询法 1、前后台顺序执行法 利用单片机的中断进行前后台切换&#xff0c;然后进行任务顺序执行&#xff0c;但其实在…

windows错误事件 98、41、7000、55、153解决办法

事件错误&#xff1a;98、55、153 疑难解答清单 在系统事件日志中&#xff0c;搜索新技术文件系统 (NTFS) 和磁盘相关的警告和错误。 例如&#xff0c;事件 ID 55、153 或 98。 管理员身份打开CMD&#xff0c;运行命令 chkdsk /scan 并检查结果。 该 chkdsk /scan 命令是只读…

SpringMVC项目出现404

目录 问题讲解&#xff1a; 解决方案&#xff1a; 1、处理器映射器和处理器适配器以及视图解析器没有配置好 2、Controller的包扫描没有加或者包扫描的配置是错误的 3、当然也有说jar包没有 4、请求地址是错误的 5、还有一种解决办法说web.xml配置DispatcherServlet的时…

有病但合理的 ChatGPT 提示语

ChatGPT 面世一年多了&#xff0c;如何让大模型输出高质量内容&#xff0c;让提示词工程成了一门重要的学科。以下是一些有病但合理的提示词技巧&#xff0c;大部分经过论文证明&#xff0c;有效提高 ChatGPT 输出质量&#xff1a; ​1️⃣ Take a deep breath. 深呼吸 ✨ 作用…

直流电和交流电

直流电&#xff08;Direct Current&#xff0c;简称DC&#xff09;和交流电&#xff08;Alternating Current&#xff0c;简称AC&#xff09;是电流的两种基本形式。 1. 直流电 直流电是指电流方向始终保持不变的电流。在直流电中&#xff0c;电子只能沿着一个方向移动。直流电…

力扣17. 电话号码的字母组合(java 回溯法)

Problem: 17. 电话号码的字母组合 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 题目给定一串数字&#xff0c;要求我们找出所有可能的字母组合&#xff0c;即我们可以穷举出所有可能的结果&#xff0c;而涉及到穷举我们自然可以想到利用回溯来解决问题&#xff0c…

Win10操作系统安装Python

1 Python解释器下载 1.1 安装环境 Windows 10 专业工作站版22H2 python-3.9.6-amd64.exe 1.2 下载地址 Python官网&#xff1a;Welcome to Python.org Python镜像&#xff1a;CNPM Binaries Mirror 2 Python解释器安装 2.1 Install Python 3.9.6 (64-bit)界面 双击运行下…

1个电子书模板网站!分分钟制作出精美电子书

随着互联网的发展&#xff0c;电子书已经成为了越来越多人的选择。想要制作一本精美的电子书&#xff0c;却苦于没有专业的技能和工具&#xff1f;别担心&#xff0c;小编向大家推荐一个电子书模板网站&#xff0c;让你分分钟制作出精美电子书&#xff01; 这个网站叫做[FLBOOK…

.net 安装Postgresql驱动程序ngpsql

.net 安装Postgresql驱动程序ngpsql 最近搞一个物联网项目&#xff0c;需要采集fanuc数控机床的数据&#xff0c;厂家提供的API只支持windows&#xff0c;所以就决定C#开发&#xff0c;数据库用postgresql&#xff0c; 安装数据库驱动一波三折。 作为一个讨厌微软的老程序猿&…

宝塔面板部署Apache服务器搭建本地站点发布到公网可访问【内网穿透】

文章目录 前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4. 固定http地址5. 配置二级子域名6. 创建一个测试页面 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家…

CTF比赛中web安全题型讲解

在CTF&#xff08;Capture The Flag&#xff09;竞赛中&#xff0c;Web安全题目是测试参赛者对Web应用漏洞利用和防御能力的重要环节。以下是30道Web类题型及其标准答案&#xff0c;对初次打比赛的网安人员来说&#xff0c;还是有一些帮助的&#xff0c;喜欢可以收藏。 题目及…

六级高频词组1

目录 词组 参考链接 词组 1. abide by&#xff08;be faithful to &#xff1b;obey&#xff09;忠于&#xff1b;遵守。 2. be absent from… 缺席&#xff0c;不在 3. absence or mind&#xff08;being absent-minded&#xff09; 心不在焉 4. absorb&#xff08;take …

POJ - 2528 Mayor‘s posters

本题注意离散化的时候可能会出现区间串联情况&#xff0c;比如 [1,10] [5,10] [1,4] 和 [1,10] [6,10] [1,4] 直接离散化的话两者一样&#xff0c;但是实际上是不一样的 解决办法是你在相邻的差不是1的数对中再插一个数就好了 离线区间染色 查询根节点 #include<iostrea…

LeetCode力扣每日一题(Java):21、合并两个有序链表

一、题目 二、解题思路 1、我的思路 两个有序链表的合并已经是老生常谈的话题了&#xff0c;大家肯定并不陌生 依次比较两链表结点的值&#xff0c;将值小的添加到新链表的末尾&#xff0c;并将指针后移&#xff08;因为之前学C语言说说惯了指针&#xff0c;不知道在java中…

【Android开发-25】Android中多线程编程用法介绍

1&#xff0c;线程基本用法 在Android中&#xff0c;线程的使用主要有两种方法&#xff1a;一种是扩展java.lang.Thread类&#xff0c;另一种是实现Runnable接口。 1.1以下是一个简单的Android线程继承Thread的用法示例&#xff1a; public class MyThread extends Thread {…

ffmpeg过滤器filter理论与实战

文章目录 前言一、DirectShow1、简介2、程序基本结构3、架构 二、过滤器1、视频过滤器 -vf2、音频过滤器 -af3、过滤器链&#xff08;Filterchain&#xff09;4、过滤器图&#xff08;Filtergraph&#xff09;①、基本语法②、Filtergraph 的分类 5、结构体间的关系图 三、过滤…

手动搭建Magento电商网站

Magento是一个用PHP编写的开源电子商务平台。它的架构是可扩展和模块化的&#xff0c;使其成为构建大中型网站的绝佳选择。Magento支持从5.6到7.1的PHP版本&#xff0c;并利用MySQL数据库进行数据存储。本文将为您介绍如何在CentOS 7操作系统的ECS实例上搭建Magento电商网站。 …

如何优雅使用 vue-html2pdf 插件生成pdf报表

使用 vue-html2pdf 插件 业务背景&#xff0c;老板想要一份能征服客户的pdf报表&#xff0c;传统的pdf要手撕&#xff0c;企业中确实有点耗费时间&#xff0c;于是github上面看到开源的这个插件就…废话不多说&#xff0c;直接上教程 1.使用下面命令安装 vue-html2pdf npm i…

牛客算法心得——买卖股票的最好时机三(dp)

大家好&#xff0c;我是晴天学长&#xff0c; 一个找状态的经典题&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 1) .买卖股票的最好时机&#xff08;三&#xff09; 假设你有一个数组prices&#xff0c;…