Pytorch-CNN轴承故障一维信号分类(二)

news2024/11/26 0:50:09

目录

前言

1 数据集制作与加载

1.1 导入数据

1.2 数据加载,训练数据、测试数据分组,数据分batch

2 CNN-2D分类模型和训练、评估

2.1 定义CNN-2d分类模型

2.2 定义模型参数

2.3 模型结构

2.4 模型训练

2.5 模型评估

3 CNN-1D分类模型和训练、评估

3.1 定义CNN-1d分类模型

3.2 定义模型参数

3.3 模型结构

3.4 模型训练

3.5 模型评估

4 模型对比


往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN模型一维卷积和二维卷积对故障数据的分类,然后进行对比。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

1 数据集制作与加载

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

第一步,导入十分类数据

import numpy as np
import pandas as pd
from scipy.io import loadmat

file_names = ['0_0.mat','7_1.mat','7_2.mat','7_3.mat','14_1.mat','14_2.mat','14_3.mat','21_1.mat','21_2.mat','21_3.mat']

for file in file_names:
    # 读取MAT文件
    data = loadmat(f'matfiles\\{file}')
    print(list(data.keys()))

第二步,读取MAT文件驱动端数据

# 采用驱动端数据
data_columns = ['X097_DE_time', 'X105_DE_time', 'X118_DE_time', 'X130_DE_time', 'X169_DE_time',
                'X185_DE_time','X197_DE_time','X209_DE_time','X222_DE_time','X234_DE_time']
columns_name = ['de_normal','de_7_inner','de_7_ball','de_7_outer','de_14_inner','de_14_ball','de_14_outer','de_21_inner','de_21_ball','de_21_outer']
data_12k_10c = pd.DataFrame()
for index in range(10):
    # 读取MAT文件
    data = loadmat(f'matfiles\\{file_names[index]}')
    dataList = data[data_columns[index]].reshape(-1)
    data_12k_10c[columns_name[index]] = dataList[:119808]  # 121048  min: 121265
print(data_12k_10c.shape)
data_12k_10c

第三步,制作数据集

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

第四步,制作训练集和标签

# 制作数据集和标签
import torch

# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。

def make_data_labels(dataframe):
    '''
        参数 dataframe: 数据框
        返回 x_data: 数据集     torch.tensor
            y_label: 对应标签值  torch.tensor
    '''
    # 信号值
    x_data = dataframe.iloc[:,0:-1]
    # 标签值
    y_label = dataframe.iloc[:,-1]
    x_data = torch.tensor(x_data.values).float()
    y_label = torch.tensor(y_label.values.astype('int64')) # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
    return x_data, y_label

# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')

# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

1.2 数据加载,训练数据、测试数据分组,数据分batch

import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_xdata = load('trainX_1024_10c')
    train_ylabel = load('trainY_1024_10c')
    # 验证集
    val_xdata = load('valX_1024_10c')
    val_ylabel = load('valY_1024_10c')
    # 测试集
    test_xdata = load('testX_1024_10c')
    test_ylabel = load('testY_1024_10c')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
                                   batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
                                 batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
                                  batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    return train_loader, val_loader, test_loader

batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

2 CNN-2D分类模型和训练、评估

2.1 定义CNN-2d分类模型

注意:输入数据进行了堆叠 ,把一个1*1024 的序列 进行划分堆叠成形状为1 * 32 * 32, 就使输入序列的长度降下来了,(channels, seq_length, H_in)

2.2 定义模型参数

# 定义模型参数
batch_size = 32
# 先用浅层试一试
conv_arch = ((2, 32), (1, 64), (1, 128))  
input_channels = 1
num_classes = 10
model = CNN2DModel(conv_arch, num_classes, batch_size)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

2.3 模型结构

2.4 模型训练

训练结果

50个epoch,准确率将近97%,CNN-2D网络分类模型效果良好。

2.5 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载模型
model =torch.load('best_model_cnn2d.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))

# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
    correct_test = 0
    test_loss = 0
    for test_data, test_label in test_loader:
        test_data, test_label = test_data.to(device), test_label.to(device)
        test_output = model(test_data)
        probabilities = F.softmax(test_output, dim=1)
        predicted_labels = torch.argmax(probabilities, dim=1)
        correct_test += (predicted_labels == test_label).sum().item()
        loss = loss_function(test_output, test_label)
        test_loss += loss.item()

test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')

Test Accuracy: 0.9313  Test Loss: 0.04866932

3 CNN-1D分类模型和训练、评估

3.1 定义CNN-1d分类模型

注意:与2d模型的信号长度堆叠不同,CNN-1D模型直接在一维序列上进行卷积池化操作;形状为(batch,H_in, seq_length),利用平均池化 使CNN-1D和CNN-2D模型最后输出维度相同,保持着相近的参数量。

3.2 定义模型参数

# 定义模型参数
batch_size = 32
# 先用浅层试一试
conv_arch = ((2, 32), (1, 64), (1, 128))  
input_channels = 1
num_classes = 10
model = CNN1DModel(conv_arch, num_classes, batch_size)  
# 定义损失函数和优化函数
model = model.to(device)
loss_function = nn.CrossEntropyLoss(reduction='sum')  # loss
learn_rate = 0.0003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.3 模型结构

3.4 模型训练

训练结果

50个epoch,准确率将近95%,CNN-1D网络分类模型效果良好。

3.5 模型评估

# 模型 测试集 验证  
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载模型
model =torch.load('best_model_cnn1d.pt')
# model = torch.load('best_model_cnn2d.pt', map_location=torch.device('cpu'))

# 将模型设置为评估模式
model.eval()
# 使用测试集数据进行推断
with torch.no_grad():
    correct_test = 0
    test_loss = 0
    for test_data, test_label in test_loader:
        test_data, test_label = test_data.to(device), test_label.to(device)
        test_output = model(test_data)
        probabilities = F.softmax(test_output, dim=1)
        predicted_labels = torch.argmax(probabilities, dim=1)
        correct_test += (predicted_labels == test_label).sum().item()
        loss = loss_function(test_output, test_label)
        test_loss += loss.item()

test_accuracy = correct_test / len(test_loader.dataset)
test_loss = test_loss / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy:4.4f}  Test Loss: {test_loss:10.8f}')

Test Accuracy: 0.9185  Test Loss: 0.14493044

4 模型对比

对比CNN-2D模型 和CNN-1D模型:

模型参数量训练集准确率验证集准确率测试集准确率
CNN1D61565496.5694.6491.85
CNN2D68343098.3896.8893.13

由于CNN-2D模型参数量稍微多一点,所以模型表现得也略好一点,适当调整参数,两者模型准确率相近。但是CNN-2D推理速度要快于CNN-1D,在轴承故障数据集上,应该更考虑CNN-2D模型在堆叠后的一维信号上进行卷积池化。

注意调整参数:

  • 可以适当增加 CNN层数 和每层神经元个数,微调学习率;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1301254.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

玩转大数据10:深度学习与神经网络在大数据中的应用

目录 1. 引言:深度学习和神经网络在大数据中的重要性和应用场景 2. 深度学习的基本概念和架构 3. Java中的深度学习框架 3.1. Deeplearning4j框架介绍及Java编程模型 3.2. DL4J、Keras和TensorFlow的集成 4. 大数据与深度学习的结合 4.1. 大数据与深度学…

第 5 部分 — LLM中红队的深入分析:数学和实证方法

一、说明 大型语言模型 (LLM) 领域正在迅速发展,需要强大的红队策略来确保其安全性和可靠性。 红队是一种模拟对抗性攻击来识别漏洞的方法,需要对理论基础和实际应用有深入的了解。在这个分析中,我深入研究了复杂的数学模型,并提供…

MOSFET 驱动设计

MOSFET 驱动设计 由于 MOSFET 的栅极 G 和源极 S 以及栅极 G 和漏极 D 之间隔着氧化物(即绝缘层),所以 MOSFET 也叫绝缘栅场效应晶体管。常用于控制负载电路的通断,这种就属于功率 MOSFET,专用于驱动大功率负载。 1.…

RCNN 学习

RCNN算法流程 RCNN算法流程可分为4个步骤 一张图像生成1K~2K个候选区域(使用Selective Search方法)对每个候选区域,使用深度网络图特征特征送入每一类的SVM分类器,判别是否属于该类使用回归期器细修正候选框位置 1.候选区域的生…

【机器学习】041_模型开发迭代过程

一、模型开发的一般步骤 1. 明确研究问题 确定问题的组成和结果,明晰问题是分类问题还是回归问题 2. 决定系统总体架构 ①理解数据:采集(爬取)数据,生成(导入)数据,进行数据清洗…

绕过360给目标机器添加账户

CS BOF是什么? Beacon 对象文件 (BOF) 是一个已编译的 C 程序,按照约定编写,允许其在 Beacon 进程内执行并使用内部 Beacon API。BOF 是一种通过新的利用后功能快速扩展 Beacon 代理的方法。 BOF 的占地面积较小。它们在 Beacon 进程内部运…

备份和恢复Linux服务器上的HTTP配置

备份和恢复Linux服务器上的HTTP配置是一项重要的任务,它可以确保您的服务器在出现故障或配置错误时能够迅速恢复正常运行。下面我们将介绍如何备份和恢复Linux服务器上的HTTP配置。 备份HTTP配置 登录到Linux服务器上,并使用root权限。 备份HTTP配置文…

PPT插件-好用的插件-超级对齐-大珩助手

超级对齐 包含对齐幻灯、对齐对象、对齐文本三个层级,可共用水平分布、垂直分布、交换位置、统一尺寸、垂直居中、水平居中、绝对居中、靠左对齐、靠右对齐、靠上对齐、靠下对齐 可配合图形缩放使用 可配合文本打散使用 可配合素材库中的一键替换使用 选中场景中的…

代码随想录二刷 |二叉树 |144.二叉树的前序遍历

代码随想录二刷 |二叉树 |144.二叉树的前序遍历 题目描述解题思路代码实现递归法迭代法 题目描述 144.二叉树的前序遍历 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入:root [1,null,2,3] 输…

Android P 9.0 增加以太网静态IP功能

效果图 一、Settings添加以太网的配置&#xff1a; 1、vendor\mediatek\proprietary\packages\apps\MtkSettings\res\xml\network_and_internet.xml <com.android.settingslib.RestrictedPreferenceandroid:key"ethernet_settings"android:title"string/et…

【LeetCode热题100】【滑动窗口】找到字符串中所有字母异位词

给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串&#xff08;包括相同的字符串&#xff09;。 示例 1: 输入: s "cbaebabacd", p "…

Java Web——过滤器 监听器

目录 1. Filter & 过滤器 1.1. 过滤器概述 1.2. 过滤器的使用 1.3. 过滤器生命周期 1.4. 过滤器链的使用 1.5. 注解方式配置过滤器 2. Listener & 监听器 2.1. 监听器概述 2.2. Java Web的监听器 2.2.1. 常用监听器 2.2.1.1. ServletContextListener监听器 …

深度学习与逻辑回归模型的融合--TensorFlow多元分类的高级应用

手写数字识别 文章目录 手写数字识别1、线性回归VS逻辑回归Sigmoid函数 2、逻辑回归的基本模型-神经网络模型3、多元分类基本模型4、TensorFlow实战解决手写数字识别问题准备数据集数据集划分 特征数据归一化归一化方法归一化场景 标签数据独热编码One-Hot编码构建模型损失函数…

RT-DERT改进策略:AKConv即插即用,轻松涨点

摘要 提出了一种算法&#xff0c;用于生成任意尺寸卷积核的初始采样坐标。与常规卷积核相比&#xff0c;提出的AKConv实现了不规则卷积核的函数来提取特征&#xff0c;为各种变化目标提供具有任意采样形状和尺寸的卷积核&#xff0c;弥补了常规卷积的不足。在COCO2017和VisDro…

网络设备的健康检查方式

网络设备的健康检查方式 L3检查 通过ICMP来检查IP地址是否正常 L4检查 通过三次握手来检查端口号是否正常 L7检查 通过真实的应用通信来检查应用程序是否正常

实战-docker方式部署个人私有云相册-PhotoPrism-2023.12.10-测试成功

实战-docker方式部署个人私有云相册-PhotoPrism-2023.12.10-测试成功 目录 文章目录 实战-docker方式部署个人私有云相册-PhotoPrism-2023.12.10-测试成功目录需求前提环境环境1、部署2、测试3、使用4、效果总结参考关于我最后 需求 目前为止&#xff1a; 自己的博客、知识库…

【分布式】浅谈分布式事务及解决方案

目录 一、背景 1.1、本地事务的基本概念 1.2、本地事务的基本特性 1.3、为什么需要分布式事务&#xff1f; 二、分布式事务常见解决方案 2.1、两阶段提交&#xff08;2PC&#xff09; 2.1.1、2PC实现原理 准备阶段&#xff08;Prepare phase&#xff09; 提交阶段&…

Oracle-pl/sql developer客户端连接报错问题分析

问题一&#xff1a; 用户在windows电脑使用pl/sql developer客户端使用tns方式连接数据库时&#xff0c;出现ORA-12170 TNS连接超时报错 使用ezconnect方式连接可以成功 问题一分析: 首先&#xff0c;查看pl/sql developer软件的Oracle客户端配置configure-->preferences,确…

详细介绍下OP-TEE,以及TF-A与OP-TEE的关系

什么是OP-TEE OP-TEE&#xff08;Open Portable Trusted Execution Environment&#xff09;是一个开源的可信执行环境&#xff08;TEE&#xff09;框架&#xff0c;用于嵌入式系统中的安全应用程序执行。它提供了一种安全的执行环境&#xff0c;用于保护敏感数据和执行安全操…

JRT文件服务实现

网站与客户端打印和导出方面已经无大碍了&#xff0c;今天抽时间整整文件服务&#xff0c;文件服务设计可以查看下面连接。原理一样&#xff0c;代码会有些变化。 文件服务设计 首先实现文件服务的服务端&#xff0c;就是一个业务脚本&#xff0c;用来接收上传、移动和删除文件…