redis中缓存雪崩,缓存穿透,缓存击穿等

news2025/1/24 15:17:15

缓存雪崩

        由于原有缓存失效(或者数据未加载到缓存中),新缓存未到期间(缓存正常从Redis中获取,如下图)所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机,造成系统的崩溃。比如我们设置缓存时采用了相同的过期时间,在某个时间节点,大量的 key 失效,导致大量的请求从缓存中获取不到数据而去请求数据库。

解决方法:

(1)碰到这种情况,一般并发量不是特别多的时候,可以加锁排队,加锁排队的解决方式分布式环境的并发问题,有可能还要解决分布式锁的问题;线程还会被阻塞,用户体验很差!因此,在真正的高并发场景下很少使用!

        加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法!

(2)给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存,

(3)设置有效期均匀分布

避免缓存设置相近的有效期,我们可以在设置有效期时增加随机值;

或者统一规划有效期,使得过期时间均匀分布。

(4)数据预热

对于即将来临的大量请求,我们可以提前走一遍系统,将数据提前缓存在Redis中,并设置不同的过期时间。

(5)保证Redis服务高可用

前面我们介绍过Redis的哨兵模式和集群模式,为防止Redis集群单节点故障,可以通过这两种模式实现高可用。   

(6)做二级缓存,或者双缓存策略。A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。

缓存穿透

缓存穿透意思就是某个不存在的key一直被访问,结果发现数据库中也没有这样的数据,最终导致访问该key的所有请求都直接请求到数据库了。

大并发的缓存穿透会导致缓存雪崩。

解决方案:

(1)如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库。

        某个key数据并不存在,那么就存一个 NULL 就好了,但是一定不要忘记设置过期时间,因为假设id=3的记录不存在,然后本次访问没有查询到数据,缓存中存的是null如果过一会儿新增了一条记录为3的数据,如果缓存不设置过期时间,那么这条数据就永远获取不到。

(2)根据缓存数据Key的规则。例如我们公司是做机顶盒的,缓存数据以Mac为Key,Mac是有规则,如果不符合规则就过滤掉,这样可以过滤一部分查询。在做缓存规划的时候,Key有一定规则的话,可以采取这种办法。这种办法只能缓解一部分的压力,过滤和系统无关的查询,但是无法根治。

(3)采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的BitSet中,不存在的数据将会被拦截掉,从而避免了对底层存储系统的查询压力。关于布隆过滤器,详情查看:基于BitSet的布隆过滤器(Bloom Filter)

布隆过滤器(bloomfilter)是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以判断数据是否在表中。将数据项添加到布隆过滤器中,用k个不同的哈希函数映射数据项的位置。

例子:将“semlinker”数据项存入布隆过滤器中,使用三个不同的哈希方式产生三个索引246。查询这个数据项时,查看这三个哈希函数运算后产生的索引值,246其中任何一个索引位为‘0’,则该值不在集合中;均为1的话则可能存在在集合中。

布隆过滤器优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

缓存击穿

Redis中一个热点key在失效的同时,大量的请求过来,从而会全部到达数据库,压垮数据库。

解决方法:

(1)设置热点数据永不过期

对于某个需要频繁获取的信息,缓存在Redis中,并设置其永不过期。当然这种方式比较粗暴,对于某些业务场景是不适合的。

(2)定时更新

比如这个热点数据的过期时间是1h,那么每到59minutes时,通过定时任务去更新这个热点key,并重新设置其过期时间。

(3)互斥锁

这是解决缓存穿透比较常用的方法。

互斥锁简单来说就是在Redis中根据key获得的value值为空时,先锁上,然后从数据库加载,加载完毕,释放锁。若其他线程也在请求该key时,发现获取锁失败,则睡眠一段时间(比如100ms)后重试。

缓存预热

        缓存预热就是系统上线后,提前将相关的缓存数据直接加载到缓存系统。避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!

解决方案:

(1)直接写个缓存刷新页面,上线时手工操作下;

(2)数据量不大,可以在项目启动的时候自动进行加载;

(3)定时刷新缓存;

缓存更新

        redis 内存淘汰机制 (默认的有6中策略),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:

(1)定时去清理过期的缓存;

(2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。

redis 内存淘汰机制有以下几个:

  • noeviction: 不删除策略, 达到最大内存限制时, 如果需要更多内存, 直接返回错误信息。 大多数写命令都会导致占用更多的内存(有极少数会例外, 如 DEL )。
  • allkeys-lru:所有key通用; 优先删除最近最少使用(less recently used ,LRU) 的 key。
  • allkeys-random: 所有key通用; 随机删除一部分 key。

  • volatile-lru:只限于设置了 expire 的部分; 优先删除最近最少使用(less recently used ,LRU) 的 key。
  • volatile-random:只限于设置了 expire 的部分; 随机删除一部分 key。
  • volatile-ttl:只限于设置了 expire 的部分; 优先删除剩余时间(time to live,TTL) 短的key。

缓存降级

        当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开 关实现人工降级。 降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)

        在进行降级之前要对系统进行梳理,梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:

(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;

(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;

(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;

(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1297731.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

H264视频编码原理

说到视频,我们首先想到的可能就是占内存。我们知道一个视频是由一连串图像序列组成的,视频中图像一般是 YUV 格式。假设有一个电影视频,分辨率是 1080P,帧率是 25fps,并且时长是 2 小时,如果不做视频压缩的…

每日一练【三数之和】

一、题目描述 15. 三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可…

【Java】构建哈夫曼树和输出哈夫曼编码

问题背景 一个单位有12个部门,每个部门都有一部电话,但是整个单位只有一根外线,当有电话打过来的时候,由转接员转到内线电话,已知各部门使用外线电话的频率为(次/天):5 20 10 12 8 …

算法Day23 简单吃饭(0-1背包)

简单吃饭(0-1背包) Description Input Output Sample 代码 import java.util.Scanner; public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);int n scanner.nextInt();int total scanner.nextInt(…

Java一对一聊天程序

我们首先要完成服务端,不然出错,运行也要先运行服务端,如果不先连接服务端,就不监听,那客户端不知道连接谁 服务端 import java.awt.BorderLayout; import java.awt.event.ActionEvent; import java.awt.event.Actio…

Qt之QSlider和QProgressBar

Qt之QSlider和QProgressBar 实验结果 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent) :QWidget(parent),ui(new Ui::Widget) {ui->setupUi(this);connect(ui->dial,&QDial::valueChanged,this,&Widget::do_val…

Redis rdb源码解析

前置学习:Redis server启动源码-CSDN博客 1、触发时机 1、执行save命令--->rdbSave函数 2、执行bgsave命令--->rdbSaveBackground函数或者(serverCron->prepareForShutdown) 3,主从复制-->startBgsaveForReplication…

序列的Z变换(信号的频域分析)

1. 关于Z变换 2. 等比级数求和 3. 特殊序列的Z变换 4. 因果序列/系统收敛域的特点 5. 例题

C/C++,树算法——二叉树的插入、移除、合并及遍历算法之源代码

1 文本格式 #include<iostream>; using namespace std; // A BTree node class BTreeNode { int* keys; // An array of keys int t; // Minimum degree (defines the range for number of keys) BTreeNode** C; // An array of child pointers …

Redis 命令全解析之 Hash类型

文章目录 ⛄介绍⛄命令⛄RedisTemplate API⛄应用场景 ⛄介绍 Hash类型&#xff0c;也叫散列&#xff0c;其value是一个无序字典&#xff0c;类似于Java中的 HashMap 结构。 String结构是将对象序列化为JSON字符串后存储&#xff0c;当需要修改对象某个字段时很不方便&#xf…

redis集群(cluster)笔记

1. 定义&#xff1a; 由于数据量过大&#xff0c;单个Master复制集难以承担&#xff0c;因此需要对多个复制集进行集群&#xff0c;形成水平扩展每个复制集只负责存储整个数据集的一部分&#xff0c;这就是Redis的集群&#xff0c;其作用是提供在多个Redis节点间共享数据的程序…

论MYSQL注入的入门注解

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 &#x1f4d1;什么是MySQL注入&…

Win10+WSL2+Ubuntu22.04 +图形化桌面配置

一 配置WSL2 如何在 Windows 10 上安装 WSL 2 - 知乎 wsl --set-version Ubuntu 2 二 安装Ubuntu22.04 用IDM能加速下载&#xff0c;去官网下载22.04的appxbundle&#xff0c;后缀改为zip&#xff0c;这个包含各种操作系统的Ubuntu22.04的appx。我们选择x64解压就行了&…

2023-12-05 Qt学习总结2

点击 <C 语言编程核心突破> 快速C语言入门 Qt学习总结 前言五 Hello Qt!六 Qt控件和事件七 Qt信号和槽八 Qt自定义信号和槽总结 前言 要解决问题: 学习qt最核心知识, 多一个都不学. 五 Hello Qt! 现在我们已经有了一个空窗口工程, 传统上, 我们要实现一个"Hello …

104. 二叉树的最大深度(Java)

目录 解法&#xff1a; 官方解答&#xff1a; 方法一&#xff1a;深度优先搜索 方法二&#xff1a;广度优先搜索 思路与算法 复杂度分析 时间复杂度&#xff1a; 空间复杂度&#xff1a; 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根…

mysql pxc高可用离线部署(三)

pxc学习流程 mysql pxc高可用 单主机 多主机部署&#xff08;一&#xff09; mysql pxc 高可用多主机离线部署&#xff08;二&#xff09; mysql pxc高可用离线部署&#xff08;三&#xff09; mysql pxc高可用 跨主机部署pxc 本文使用docker进行安装&#xff0c;主机间通过…

openGauss学习笔记-144 openGauss 数据库运维-例行维护-慢sql诊断

文章目录 openGauss学习笔记-144 openGauss 数据库运维-例行维护-慢sql诊断144.1 背景信息144.2 前提条件 openGauss学习笔记-144 openGauss 数据库运维-例行维护-慢sql诊断 144.1 背景信息 在SQL语句执行性能不符合预期时&#xff0c;可以查看SQL语句执行信息&#xff0c;便…

CGAL的3D简单网格数据结构

由具有多个曲面面片的多面体曲面生成的多域四面体网格。将显示完整的三角剖分&#xff0c;包括属于或不属于网格复合体、曲面面片和特征边的单元。 1、网格复合体、 此软件包致力于三维单纯形网格数据结构的表示。 一个3D单纯形复杂体由点、线段、三角形、四面体及其相应的组合…

BUUCTF [CISCN2019 华北赛区 Day2 Web1]Hack World 1(SQL注入之布尔盲注)

题目环境判断注入类型 1 2 3 1’ 输入1’报错提示bool(false) 可知是字符型的布尔注入&#xff08;盲注&#xff09; 尝试万能密码 1’ or ‘1’1 已检测SQL注入 猜测某些关键字或者字符被过滤 FUZZ字典爆破 可以看到部分关键字被过滤&#xff0c;包括空格 All You Want Is In …

iOS——定位与地图

平时在写项目的时候可能会遇到需要使用定位服务的地方&#xff0c;比如说获取位置和导航等。因此这里我会使用OC自带的库以及苹果系统的地图来获取定位以及显示在地图上。 开始前的设置 在获取定位前&#xff0c;需要在项目文件的info中添加两个关键字&#xff0c;用于向用户…