redis集群(cluster)笔记

news2025/2/25 13:51:45

1. 定义:

由于数据量过大,单个Master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集。官网介绍地址

在这里插入图片描述

2.能干嘛

  • Redis集群支持多个Master,每个Master又可以挂载多个Slave,实现读写分离,支持数据的高可用,支持海里数据的读写存储操作

  • 由于Cluster自带Sentinel的故障转移机制,内置了高可用的支持,无需再去使用哨兵功能

  • 客户端与Redis的节点连接,不再需要连接集群中所有的节点,只需要任意连接集群中的一个可用节点即可

  • 槽位slot负责分配到各个物理服务节点,由对应的集群来负责维护节点、插槽和数据之间的关系

3. 集群算法-分片-槽位slot

3.1 官网介绍:

在这里插入图片描述

翻译后:

在这里插入图片描述

3.2 redis集群的槽位slot

在这里插入图片描述

3.3 redis集群的分片

在这里插入图片描述

3.4 他两的优势

在这里插入图片描述

3.5 slot槽位映射,一般业界有3种解决方案

3.5.1 哈希取余分区

在这里插入图片描述

3.5.2 一致性哈希算法分区

(1) 是什么

一致性Hash算法背景

一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。

(2)能干嘛

提出一致性Hash解决方案。目的是当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系

(3)3大步骤

  • 算法构建一致性哈希环

一致性哈希环

一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对232取模,简单来说,一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-232-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到232-1,也就是说0点左侧的第一个点代表232-1, 0和232-1在零点中方向重合,我们把这个由232个点组成的圆环称为Hash环。

在这里插入图片描述

  • redis服务器ip节点映射

节点映射

将集群中各个IP节点映射到环上的某一个位置。

将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:

在这里插入图片描述

  • key落到服务器的落键规则

当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

在这里插入图片描述

(4)优点

容错性

假设Node C宕机,可以看到此时对象A、B、D不会受到影响。一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。

在这里插入图片描述

扩展性

数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,

不会导致hash取余全部数据重新洗牌。

在这里插入图片描述

(5)缺点

Hash环的数据倾斜问题

一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,

例如系统中只有两台服务器:

在这里插入图片描述

(6)小总结

为了在节点数目发生改变时尽可能少的迁移数据

将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。

而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点

优点

加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。

缺点

数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。

3.5.3 哈希槽分区

(1) 为什么出现
在这里插入图片描述

哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。

(2) 能干什么

解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。
在这里插入图片描述

槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配

(3) 多少个hash槽

一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。

集群会记录节点和槽的对应关系,解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取模,余数是几key就落入对应的槽里。HASH_SLOT = CRC16(key) mod 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

(4)hash槽计算

Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis先对key使用crc16算法算出一个结果然后用结果对16384求余数[ CRC16(key) % 16384],这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上

在这里插入图片描述

3.6 经典面试题 为什么redis集群的最大槽数是16384个

3.6.1 为什么redis集群的最大槽数是16384个?

Redis集群并没有使用一致性hash而是引入了哈希槽的概念。Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。但为什么哈希槽的数量是16384(2^14)个呢?

CRC16算法产生的hash值有16bit,该算法可以产生2^16=65536个值。
换句话说值是分布在0~65535之间,有更大的65536不用为什么只用16384就够?
作者在做mod运算的时候,为什么不mod65536,而选择mod16384?
HASH_SLOT = CRC16(key) mod 65536为什么没启用

https://github.com/redis/redis/issues/2576

在这里插入图片描述

3.6.2 说明1

在这里插入图片描述

正常的心跳数据包带有节点的完整配置,可以用幂等方式用旧的节点替换旧节点,以便更新旧的配置。这意味着它们包含原始节点的插槽配置,该节点使用2k的空间和16k的插槽,但是会使用8k的空间(使用65k的插槽)。同时,由于其他设计折衷,Redis集群不太可能扩展到1000个以上的主节点。因此16k处于正确的范围内,以确保每个主机具有足够的插槽,最多可容纳1000个矩阵,但数量足够少,可以轻松地将插槽配置作为原始位图传播。请注意,在小型群集中,位图将难以压缩,因为当N较小时,位图将设置的slot / N位占设置位的很大百分比。

3.6.3 说明2

在这里插入图片描述

(1) 如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。

在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为65536时,这块的大小是: 65536÷8÷1024=8kb

在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为16384时,这块的大小是: 16384÷8÷1024=2kb

因为每秒钟,redis节点需要发送一定数量的ping消息作为心跳包,如果槽位为65536,这个ping消息的消息头太大了,浪费带宽。

(2) redis的集群主节点数量基本不可能超过1000个。

集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。因此redis作者不建议redis cluster节点数量超过1000个。 那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了。没有必要拓展到65536个。

(3) 槽位越小,节点少的情况下,压缩比高,容易传输

Redis主节点的配置信息中它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中会对bitmap进行压缩,但是如果bitmap的填充率slots / N很高的话(N表示节点数),bitmap的压缩率就很低。 如果节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低。

3.6.4 计算结论

在这里插入图片描述

3.7 Redis集群 不保证强一致性,这意味着在特定的条件下,Redis集群可能会丢掉一些被系统收到的写入请求命令

在这里插入图片描述

b站学习尚硅谷redis7视频讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1297708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

论MYSQL注入的入门注解

📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 📑什么是MySQL注入&…

Win10+WSL2+Ubuntu22.04 +图形化桌面配置

一 配置WSL2 如何在 Windows 10 上安装 WSL 2 - 知乎 wsl --set-version Ubuntu 2 二 安装Ubuntu22.04 用IDM能加速下载,去官网下载22.04的appxbundle,后缀改为zip,这个包含各种操作系统的Ubuntu22.04的appx。我们选择x64解压就行了&…

2023-12-05 Qt学习总结2

点击 <C 语言编程核心突破> 快速C语言入门 Qt学习总结 前言五 Hello Qt!六 Qt控件和事件七 Qt信号和槽八 Qt自定义信号和槽总结 前言 要解决问题: 学习qt最核心知识, 多一个都不学. 五 Hello Qt! 现在我们已经有了一个空窗口工程, 传统上, 我们要实现一个"Hello …

104. 二叉树的最大深度(Java)

目录 解法&#xff1a; 官方解答&#xff1a; 方法一&#xff1a;深度优先搜索 方法二&#xff1a;广度优先搜索 思路与算法 复杂度分析 时间复杂度&#xff1a; 空间复杂度&#xff1a; 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根…

mysql pxc高可用离线部署(三)

pxc学习流程 mysql pxc高可用 单主机 多主机部署&#xff08;一&#xff09; mysql pxc 高可用多主机离线部署&#xff08;二&#xff09; mysql pxc高可用离线部署&#xff08;三&#xff09; mysql pxc高可用 跨主机部署pxc 本文使用docker进行安装&#xff0c;主机间通过…

openGauss学习笔记-144 openGauss 数据库运维-例行维护-慢sql诊断

文章目录 openGauss学习笔记-144 openGauss 数据库运维-例行维护-慢sql诊断144.1 背景信息144.2 前提条件 openGauss学习笔记-144 openGauss 数据库运维-例行维护-慢sql诊断 144.1 背景信息 在SQL语句执行性能不符合预期时&#xff0c;可以查看SQL语句执行信息&#xff0c;便…

CGAL的3D简单网格数据结构

由具有多个曲面面片的多面体曲面生成的多域四面体网格。将显示完整的三角剖分&#xff0c;包括属于或不属于网格复合体、曲面面片和特征边的单元。 1、网格复合体、 此软件包致力于三维单纯形网格数据结构的表示。 一个3D单纯形复杂体由点、线段、三角形、四面体及其相应的组合…

BUUCTF [CISCN2019 华北赛区 Day2 Web1]Hack World 1(SQL注入之布尔盲注)

题目环境判断注入类型 1 2 3 1’ 输入1’报错提示bool(false) 可知是字符型的布尔注入&#xff08;盲注&#xff09; 尝试万能密码 1’ or ‘1’1 已检测SQL注入 猜测某些关键字或者字符被过滤 FUZZ字典爆破 可以看到部分关键字被过滤&#xff0c;包括空格 All You Want Is In …

iOS——定位与地图

平时在写项目的时候可能会遇到需要使用定位服务的地方&#xff0c;比如说获取位置和导航等。因此这里我会使用OC自带的库以及苹果系统的地图来获取定位以及显示在地图上。 开始前的设置 在获取定位前&#xff0c;需要在项目文件的info中添加两个关键字&#xff0c;用于向用户…

ooTD I 这么精致优雅的套装也太好看了吧

精致到每一个细节的国风套装 领口袖口拼接环保毛条 精美的绣花增添浓重的高级感 外套90白鸭绒填充 敲暖和裙子的门襟处 也是做了定制盘扣&#xff0c;外套和裙子单独来穿也很精致

STM32L051使用HAL库操作实例(13)- 读取IAQ-CORE-C传感器实例

目录 一、前言 二、传感器参数 三、STM32CubeMX配置&#xff08;本文使用的STM32CubeMX版本为6.1.2&#xff09;例程使用模拟I2C进行数据读取 1.MCU选型 2.使能时钟 3.时钟配置 4.GPIO口配置 四、配置STM32CubeMX生成工程文件 五、点击GENERATE CODE生成工程文件 六、…

人类的耳朵:听觉的动态范围

作者&#xff1a;听觉健康 听觉的动态范围即可用的听力范围。在坐标系中&#xff0c;它可以表示为以听阈和最大舒适级为界形成的区域&#xff0c;其坐标轴分别为频率和声压级&#xff08;刺激持续时间在某种程度上对其产生影响&#xff09;。是什么因素决定了人类听力的极限&am…

ST-Link usb communication error 解决,如何解决STlink驱动连不上的错误

电脑连接不上ST-Link&#xff0c;怎么办&#xff0c;以下方法可以一条一条试试。 方法1 重启电脑。 方法2 确信自己的电脑驱动是装好了的&#xff0c;没有装好&#xff0c;可以看下面这个链接的驱动装一下。 http://www.openedv.com/docs/tool/dap/ST-LINKV2.html 能在设…

【数据结构(九)】顺序存储二叉树(2)

文章目录 1. 相关概念2. 顺序存储二叉树的遍历 1. 相关概念 从数据存储来看&#xff0c;数组存储方式和树的存储方式可以相互转换&#xff0c;即数组可以转换成树&#xff0c;树也可以转换成数组&#xff0c;看右面的示意图。 转换原则:     1.上图的二叉树的结点&#xff…

【PHP】php发送邮箱验证码格式美化,样式美化

效果展示&#xff1a; 格式美化前 格式美化后 代码 大多数框架都自带有封装好的发送email方法&#xff0c;就不多赘述&#xff0c;主要写格式&#xff1a; <? php// 验证码过期时间 $expire 120; // 发件人邮箱 $from_email xx163.com; // 收件人 $to_email to163.com…

48.Go简要实现令牌桶限流与熔断器并集成到Gin框架中

文章目录 一、简介二、限流器与熔断器在微服务中的作用1.限流器 &#xff1a; 对某个接口单位时间内的访问量做限制2. 熔断器&#xff1a;当服务连续报错&#xff0c;超过一定阈值时&#xff0c;打开熔断器使得服务不可用 三、具体实现1. 限流器实现逻辑&#xff08;以令牌桶算…

yolov8火灾报警检测和烟雾检测

火灾和烟雾的跟踪和检测使用YOLOv8 介绍 该代码库包含使用YOLOv8在实时视频中跟踪和检测火灾和烟雾的代码。该项目使用预训练的YOLOv8模型在给定的视频帧中识别火灾和烟雾的存在&#xff0c;并在后续帧中进行跟踪。 应用场景 火灾烟雾检测技术可以应用于各种公共场所&…

特殊进程之守护进程

文章目录 1、守护进程的概念2、如何查看守护进程3、编写守护进程的步骤3.1 创建子进程&#xff0c;父进程退出3.2 在子进程中创建新会话3.3 改变当前工作目录3.4 重设文件权限掩码3.5 关闭不需要的文件描述符3.6 某些特殊的守护进程打开/dev/null 4、守护进程代码示例 1、守护进…

L1-028:判断素数

题目描述 本题的目标很简单&#xff0c;就是判断一个给定的正整数是否素数。 输入格式&#xff1a; 输入在第一行给出一个正整数N&#xff08;≤ 10&#xff09;&#xff0c;随后N行&#xff0c;每行给出一个小于231的需要判断的正整数。 输出格式&#xff1a; 对每个需要判断的…