智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/25 18:48:17

智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于侏儒猫鼬算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.侏儒猫鼬算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用侏儒猫鼬算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.侏儒猫鼬算法

侏儒猫鼬算法原理请参考:https://blog.csdn.net/u011835903/article/details/127455123
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

侏儒猫鼬算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明侏儒猫鼬算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1296722.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue路由导航守卫(全局守卫、路由独享守卫、组件内守卫)

目录 一、什么是Vue路由导航守卫? 二、全局守卫 1、beforeEach 下面是一个beforeEach的示例代码: 2、beforeResolve 下面是一个beforeResolve的示例代码: 3、afterEach 下面是一个afterEach的示例代码: 三、路由独享守卫…

基于stm32ESP8266控制并显示速度的小车

这篇博客是为了实现stm32与ESP8266通讯控制的小车,同时可以实现在网络助手和OLED显示屏上显示速度的功能。 一、硬件部分 名称图片功能32单片机--小车-oled显示屏显示当当前的速度,有需要了解如何使用的可以看看我的文章,http://t.csdnimg.…

C++:vector增删查改模拟实现

C:vector增删查改模拟实现 前言一、迭代器1.1 非const迭代器:begin()、end()1.2 const迭代器:begin()、end() 二、构造函数、拷贝构造函数、赋值重载、析构函数模拟实现2.1 构造函数2.1.1 无参构造2.1.2 迭代器区间构造2.1.3 n个值构造 2.2 拷贝构造2.3 …

【无标将列表中的多组参数依次带入指定的函数将每次调用函数返回结果组成列表itertools.starmap()题】

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 将列表中的多组参数 依次带入指定的函数 将每次调用函数 返回结果组成列表 itertools.starmap() [太阳]选择题 请问以下代码输出的结果是? import itertools a [(1, 2), (3, 4)] p…

leetcode系列:反转链表的形象表示

反转链表是一道比较简单的题,主要考察的是对链表数据结构的理解和双指针应用,比较容易出错的地方是指针的移动顺序。在练习的过程中想到了一个比较形象的表示方法,于是记录下来。 # Definition for singly-linked list. # class ListNode: #…

MATLAB - 凸优化(Convex Optimization)

系列文章目录 前言 凸优化(Convex optimization)是在凸约束(convex constraints)条件下使凸目标函数(convex objective function)最小化的过程,或者等同于在凸约束条件下使凹目标函数最大化的过…

四元数,欧拉角,旋转矩阵,旋转向量

四元数,旋转矩阵,旋转向量,欧拉角 一、欧拉角 1、欧拉角是表达旋转的最简单的一种方式,形式上它是一个三维向量,其值分别代表物体绕坐标系三个轴(x,y,z轴)的旋转角度,默认旋转正向为逆坐标轴逆…

华为OD机试 - 生成哈夫曼树(Java JS Python C)

题目描述 给定长度为 n 的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。 请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。 为了保证输出的二叉树中序遍历结果统一,增加以下限制: 二叉树节点中,左节…

mybatis和mybatisplus中对 同namespace 中id重复处理逻辑源码解析

一、背景 同事在同一个mapper.xml (namespace相同),复制了一个sql没有修改id,正常启动项目。但是我以前使用mybatis的时候如果在namespace相同情况下,id重复,项目会报错无法正常启动,后来看代码…

Vue3-01-创建项目

环境准备 1.需要用到 16.0 以及更高版本的 node.js 2.使用vscode编辑器进行项目开发可以在命令行中查看node的版本号: node -v创建项目 1.准备一个目录 例如,我创建项目的时候是在该目录下进行的;D:\projectsTest\vue3project2.执行创建命令(*&#x…

React聚焦渲染速度

目录 一、引言 二、React.js的渲染速度机制 虚拟DOM Diff算法 三、优化React.js的渲染速度 避免不必要的重新渲染 使用合适的数据结构和算法 使用React Profiler工具进行性能分析 四、实际案例分析 五、总结 一、引言 在当今的Web开发领域,React.js无疑是…

屏蔽百度首页推荐和热搜的实战方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

第二十一章

计算机应用实现了多台计算机间的互联,使得它们彼此之间能够进行数据交流。网络应用程序就是在已连接的不同计算机上运行的程序,这些程序借助于网络协议,相互之间可以交换数据。编写网络应用程序前,首先必须明确所要使用的网络协议…

C++STL的string(超详解)

文章目录 前言C语言的字符串 stringstring类的常用接口string类的常见构造string (const string& str);string (const string& str, size_t pos, size_t len npos); capacitysize和lengthreserveresizeresize可以删除数据 modify尾插插入字符插入字符串 inserterasere…

软件设计中如何画各类图之八深入解析部署图:物理布局与系统架构的视觉化呈现

目录 1 前言2 部署图的符号及说明3 画部署图的步骤3.1 **识别节点**3.2 **定义组件**3.3 **标识部署关系**3.4 **添加细节** 4 部署图的用途4.1 **系统设计与规划**4.2 **系统架构分析**4.3 **系统维护与升级** 5 实际场景举例5.1 Web应用部署图5.2 云端服务部署图 6 结语 1 前…

尝试通过AI模型进行简单的编码

一、前言 最近尝试通过AI来编程,总体感觉还是能处理写简单的问题,复杂的问题目前还是无法解决。主要的痛点还是数据噪音,就是AI永远不会承认它不会,它会给你的一个错误的信息,它也不会告诉你你的问题它暂时无法完整正…

mac苹果笔记本电脑如何强力删除卸载app软件?

苹果电脑怎样删除app?不是把app移到废纸篓就行了吗,十分简单呢! 其实不然,因为在Mac电脑上,删除应用程序只是删除了应用程序的主要组件。大多数时候,系统会有一个相当长的目录,包含所有与应用程…

SCI一区级 | Matlab实现GWO-CNN-BiLSTM-selfAttention多变量多步时间序列预测

SCI一区级 | Matlab实现GWO-CNN-BiLSTM-selfAttention多变量多步时间序列预测 目录 SCI一区级 | Matlab实现GWO-CNN-BiLSTM-selfAttention多变量多步时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-CNN-BiLSTM-selfAttention灰狼算法优化卷…

通过误差改变控制的两种策略

如果反馈误差越来越大,需要改变调节方向以减小误差并实现更好的控制。以下是两种常见的调节方向改变的方法: PID控制器中的积分限制:在PID控制中,积分项可以用来减小稳态误差。然而,当反馈误差持续增大时,积…

java打包到docker,以及idea远程调试

这里主要介绍 dockerfile的打包方式 一、打包jar包到容器 1. 在要打包的项目中创建dockerfile,dockerfile与项目的pom.xml是同级 2. 编辑dockerfile文件 FROM openjdk:8 VOLUME ["/data/untitled"] COPY target/untitled-1.0.jar "/app.jar"…