Hanlp自然语言处理如何再Spring Boot中使用

news2024/11/26 16:34:41

一、HanLP

HanLP (Hankcs' NLP) 是一个自然语言处理工具包,具有功能强大、性能高效、易于使用的特点。HanLP 主要支持中文文本处理,包括分词、词性标注、命名实体识别、依存句法分析、关键词提取、文本分类、情感分析等多种功能。 HanLP 可以在 Java、Python、Go 等多种编程语言中使用,也提供了各种语言的 API 接口,方便用户进行二次开发。HanLP 采用了深度学习和传统机器学习相结合的方法,具有较高的准确度和通用性。

二、java中用HanLP做情感分词场景

首先,下载HanLP jar包。可以从官方网站(https://github.com/hankcs/HanLP/releases)下载或者使用Maven配置。

<dependency>
    <groupId>com.hankcs</groupId>
    <artifactId>hanlp</artifactId>
    <version>portable-1.7.8</version>
</dependency>

引入完成后,在代码中调用HanLP工具类的方法,例如:

import com.hankcs.hanlp.HanLP;

public class TestHanLP {
    public static void main(String[] args) {
        String text = "中华人民共和国成立了!";
        System.out.println(HanLP.segment(text));
    }
}

运行以上代码,可以得到分词结果:

[中华人民共和国, 成立, 了, !]

除了分词外,HanLP还提供了许多其他功能,例如实体识别、关键词提取、自动摘要等。可以通过调用不同的方法来实现这些功能,具体可参考HanLP官方文档(https://github.com/hankcs/HanLP)。

需要注意的是,HanLP默认使用的是繁体中文模型,如果需要使用简体中文模型,可以在代码中添加以下语句:

HanLP.Config.enableDebug();
HanLP.Config.Normalization = true;

这样就可以使用简体中文模型进行处理了。

三、SpringBoot中如何使用Hanlp进行文本情感分析

        第一步:

                在pom.xml文件中添加Hanlp的依赖

<dependency>
    <groupId>com.hankcs</groupId>
    <artifactId>hanlp</artifactId>
    <version>portable-1.7.8</version>
</dependency>

        第二步:

                创建一个SpringBoot的Controller,用于接收文本数据,并进行情感分析

@RestController
public class SentimentAnalysisController {

    @PostMapping("/sentimentAnalysis")
    public String sentimentAnalysis(@RequestBody String text) {
        String[] sentences = HanLP.extractSentence(text);
        int positiveCount = 0;
        int negativeCount = 0;
        for (String sentence : sentences) {
            List<String> keywords = HanLP.extractKeyword(sentence, 5);
            for (String keyword : keywords) {
                if (SentimentUtil.isPositive(keyword)) {
                    positiveCount++;
                } else if (SentimentUtil.isNegative(keyword)) {
                    negativeCount++;
                }
            }
        }
        if (positiveCount > negativeCount) {
            return "Positive";
        } else if (positiveCount < negativeCount) {
            return "Negative";
        } else {
            return "Neutral";
        }
    }
}

        第三步:

                上述代码中用到了SentimentUtil类,可以参考以下实现,用于判断一个词语的情感倾向

public class SentimentUtil {

    private static final Set<String> POSITIVE_WORDS = new HashSet<>(Arrays.asList("好", "美", "乐", "棒", "赞", "爱", "优秀", "高兴", "满意", "友好", "感动"));

    private static final Set<String> NEGATIVE_WORDS = new HashSet<>(Arrays.asList("坏", "丑", "难受", "差", "批评", "悲", "痛苦", "愤怒", "失望", "憎恶", "恐惧", "忧郁", "抱怨"));

    public static boolean isPositive(String word) {
        return POSITIVE_WORDS.contains(word);
    }

    public static boolean isNegative(String word) {
        return NEGATIVE_WORDS.contains(word);
    }
}

最后:

启动SpringBoot应用,可以使用curl或其他工具,向http://localhost:8080/sentimentAnalysis发送POST请求,请求体为要进行情感分析的文本数据。返回结果可以是Positive、Negative或Neutral。

注意:上述代码仅仅是示例代码,可以根据具体的需求进行修改和优化。在实际使用中,也需要根据具体情况对Hanlp的功能进行扩展和调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1296401.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

delphi/python 实现小红书xhs用户作品列表和图片/视频无水印解析

技术学习&#xff0c;请勿用与非法用途&#xff01;&#xff01;&#xff01; 成品图用户作品列表接口 /api/sns/web/v1/user_posted?num30&cursor&user_id642bf0850000000011022c4e&image_scenes http Get方式&#xff0c;请求头需要带上x-s x-t签名验证笔记明细…

二叉树的层序遍历[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给你二叉树的根节点root&#xff0c;返回其节点值的 层序遍历 。&#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],…

【算法每日一练]-图论(保姆级教程篇12 tarjan篇)#POJ3352道路建设 #POJ2553图的底部 #POJ1236校园网络 #缩点

目录&#xff1a; 今天知识点 加边使得无向图图变成双连通图 找出度为0的强连通分量 加边使得有向图变成强连通图 将有向图转成DAG图进行dp POJ3352&#xff1a;道路建设 思路&#xff1a; POJ2553&#xff1a;图的底部 思路&#xff1a; POJ1236校园网络 思路&#x…

[ndss 2023]确保联邦敏感主题分类免受中毒攻击

Securing Federated Sensitive Topic Classification against Poisoning Attacks 摘要 我们提出了一种基于联邦学习 (FL) 的解决方案&#xff0c;用于构建能够检测包含敏感内容的 URL 的分布式分类器&#xff0c;即与健康、政治信仰、性取向等类别相关的内容。尽管这样的分类器…

docker:搭建私有仓库

文章目录 1、拉取镜像2、运行容器3、测试成功4、修改daemon.json5、重启docker 服务6、上传镜像到私有仓库6.1 标记某个镜像为私有仓库镜像6.2 上传镜像到私有仓库 其他注意项 1、拉取镜像 docker pull registry2、运行容器 docker run -di --nameregistry -p 5000:5000 regi…

3DCAT+上汽奥迪:打造新零售汽车配置器实时云渲染解决方案

在 5G、云计算等技术飞速发展的加持下&#xff0c;云渲染技术迎来了突飞猛进的发展。在这样的背景下&#xff0c;3DCAT应运而生&#xff0c;成为了业内知名的实时云渲染服务商之一。 交互式3D实时云看车作为云渲染技术的一种使用场景&#xff0c;也逐步成为一种新的看车方式&a…

HttpComponents: 领域对象的设计

1. HTTP协议 1.1 HTTP请求 HTTP请求由请求头、请求体两部分组成&#xff0c;请求头又分为请求行(request line)和普通的请求头组成。通过浏览器的开发者工具&#xff0c;我们能查看请求和响应的详情。 下面是一个HTTP请求发送的完整内容。 POST https://track.abc.com/v4/tr…

金融银行业更适合申请哪种SSL证书?

在当今数字化时代&#xff0c;金融行业的重要性日益增加。越来越多的金融交易和敏感信息在线进行&#xff0c;金融银行机构必须采取必要的措施来保护客户数据的安全。SSL证书作为一种重要的安全技术工具&#xff0c;可以帮助金融银行机构加密数据传输&#xff0c;验证网站身份&…

html中一个div中平均一行分配四个盒子,可展开与收起所有的盒子

html中一个div中平均一行分配四个盒子&#xff0c;可展开与收起所有的盒子 1.截图显示部分 2.代码展示部分 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"wid…

物易管预测性维护平台3.6.0版本上线,工况数据处理、设备故障模型、数据可视化等方面带来全新功能体验

物易管设备预测性维护平台V3.6.0版本近日正式发布上线&#xff0c;相较V3.5.0版本次主要新增优化设备工况数据接入、工况数据模型训练、数据可视化以及设备监测详情优化四个板块。新版本在处理工况数据、设备故障模型、数据分析展示以及设备监测方面带来全新的体验。 01设备工况…

【投稿】期刊选择

一、期刊影响力评价方法 只要投稿的期刊&#xff0c;被上述三个索引收录&#xff0c;那就说明该期刊的影响力是得到认可的。 二、如何选择合适的期刊 研究工作和目标期刊进行权衡。

[GXYCTF2019]禁止套娃1

提示 git泄露无参数rce &#xff01;&#xff01;注意需要python3环境 github里dirsearch工具下载位置 ###可能需要开节点才能打开 百度网盘dirsearch下载地址 ###如果github里下载不了可以在网盘下载 提取码sx5d 只给了flag在哪里呢&#xff0c;那么应该就是要让…

电子学会C/C++编程等级考试2021年09月(五级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:抓牛 农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000)。农夫有两种移动方式: 1、从X移动到X-1或X+1,每次移动花费一分钟 2、从X移动到2*X,每…

Axios 拦截器实战教程:简单易懂

Axios 提供了一种称为 “拦截器&#xff08;interceptors&#xff09;” 的功能&#xff0c;使我们能够在请求或响应被发送或处理之前对它们进行全局处理。拦截器为我们提供了一种简洁而强大的方式来转换请求和响应、进行错误处理、添加认证信息等操作。在本文中&#xff0c;我…

案例063:基于微信小程序的传染病防控宣传系统

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder …

如何进行更好的面试回复之缓存函数在项目中的性能优化?

缓存函数是一种提高函数性能的技术&#xff0c;在函数被调用时&#xff0c;会将计算结果缓存起来&#xff0c;以便在后续的调用中直接返回缓存的结果&#xff0c;从而减少了重复计算的时间。 缓存函数的实现通常包括两个步骤&#xff1a; 判断缓存是否存在&#xff1a;在函数被…

Mysql 命令行导出SQL文件和导入文件

1-导出SQL文件 要导出 MySQL 数据库到一个 SQL 文件&#xff0c;你可以使用 mysqldump 工具&#xff0c;它是 MySQL 的一个命令行工具&#xff0c;以下是一些步骤&#xff1a; 打开终端&#xff0c;并使用以下命令来执行导出操作&#xff1a; mysqldump -u wqzbxh -h 1.137.15…

DAP数据集成与算法模型如何结合使用

企业信息化建设会越来越完善&#xff0c;越来越体系化&#xff0c;当今数据时代背景下更加强调、重视数据的价值&#xff0c;以数据说话&#xff0c;通过数据为企业提升渠道转化率、改善企业产品、实现精准运营&#xff0c;为企业打造自助模式的数据分析成果&#xff0c;以数据…

无人机巡山护林,林业无人机智能助力绿色守护

随着全球环保意识的不断提高&#xff0c;无人机巡山护林已经成为解决森林巡检难题的一种独特而高效的方式。在我国&#xff0c;各地正积极探索无人机在森林防火、病虫害监测以及生态调查等领域的创新应用。随着无人机技术的不断演进&#xff0c;其在推动森林保护和可持续发展方…

高性能和多级高可用,云原生数据库 GaiaDB 架构设计解析

1 云原生数据库和 GaiaDB 目前&#xff0c;云原生数据库已经被各行各业大规模投入到实际生产中&#xff0c;最终的目标都是「单机 分布式一体化」。但在演进路线上&#xff0c;当前主要有两个略有不同的路径。 一种是各大公有云厂商选择的优先保证上云兼容性的路线。它基于存…