MIT线性代数笔记-第26讲-对称矩阵及正定性

news2024/11/28 8:25:52

目录

  • 26.对称矩阵及正定性
    • 打赏

26.对称矩阵及正定性

  1. 实对称矩阵的特征值均为实数,并且一定存在一组两两正交的特征向量

    这对于单位矩阵显然成立

    证明特征值均为实数:

    ​    设一个对称矩阵 A A A,对于 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax =λx ,依第 21 21 21讲的小技巧可知 A x ⃗ ‾ = λ ‾ x ⃗ ‾ A \overline{\vec{x}} = \overline{\lambda} \overline{\vec{x}} Ax =λx

    ​    左右一起转置可得 x ⃗ ‾ T A T = λ ‾ x ⃗ ‾ T \overline{\vec{x}}^T A^T = \overline{\lambda} \overline{\vec{x}}^T x TAT=λx T,利用对称性可得 x ⃗ ‾ T A = λ ‾ x ⃗ ‾ T \overline{\vec{x}}^T A = \overline{\lambda} \overline{\vec{x}}^T x TA=λx T,左右一起左乘 x ⃗ \vec{x} x 可得 x ⃗ ‾ T A x ⃗ = λ ‾ x ⃗ ‾ T x ⃗ \overline{\vec{x}}^T A \vec{x} = \overline{\lambda} \overline{\vec{x}}^T \vec{x} x TAx =λx Tx

    ​    而最初的等式左右一起右乘 x ⃗ ‾ T \overline{\vec{x}}^T x T可得 x ⃗ ‾ T A x ⃗ = λ x ⃗ ‾ T x ⃗ \overline{\vec{x}}^T A \vec{x} = \lambda \overline{\vec{x}}^T \vec{x} x TAx =λx Tx

    ​    所以 λ ‾ x ⃗ ‾ T x ⃗ = λ x ⃗ ‾ T x ⃗ \overline{\lambda} \overline{\vec{x}}^T \vec{x} = \lambda \overline{\vec{x}}^T \vec{x} λx Tx =λx Tx ,因而若 x ⃗ ‾ T x ⃗ ≠ 0 \overline{\vec{x}}^T \vec{x} \ne 0 x Tx =0,则 λ \lambda λ为实数

    ​    下证 x ⃗ ‾ T x ⃗ ≠ 0 \overline{\vec{x}}^T \vec{x} \ne 0 x Tx =0

    ​    对于任意复数 x = a + b i x = a + bi x=a+bi,有 x ‾ x = ( a − b i ) ( a + b i ) = a 2 + b 2 = ∣ x ∣ 2 \overline{x} x = (a - bi)(a + bi) = a^2 + b^2 = |x|^2 xx=(abi)(a+bi)=a2+b2=x2

    ​    所以 x ⃗ ‾ T x ⃗ = [ x 1 ‾ x 2 ‾ ⋯ x n ‾ ] [ x 1 x 2 ⋮ x n ] = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ + ∣ x n ∣ 2 = x ⃗ 2 \overline{\vec{x}}^T \vec{x} = \begin{bmatrix} \overline{x_1} & \overline{x_2} & \cdots & \overline{x_n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = |x_1|^2 + |x_2|^2 + \cdots + |x_n|^2 = \vec{x}^2 x Tx =[x1x2xn] x1x2xn =x12+x22++xn2=x 2

    ​    又特征向量不可能是 0 ⃗ \vec{0} 0 ,所以 x ⃗ ‾ T x ⃗ > 0 \overline{\vec{x}}^T \vec{x} > 0 x Tx >0,因而 λ \lambda λ为实数

    证明一定存在一组两两正交的特征向量:

    暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明

    • 可以注意到证明中关键的条件是 A = A ‾ A = \overline{A} A=A,但是对于复矩阵,如果 A = A ‾ T A = \overline{A}^T A=AT,那么 x ⃗ ‾ T A = λ ‾ x ⃗ ‾ T \overline{\vec{x}}^T A = \overline{\lambda} \overline{\vec{x}}^T x TA=λx T仍成立,特征值仍一定为实数且一定存在一组两两正交的特征向量,这样的复矩阵称为共轭对称矩阵
  2. 当挑选出的那些特征向量为一组标准正交基时,对称矩阵 A = S Λ S − 1 = Q Λ Q − 1 = Q Λ Q T A = S \Lambda S^{-1} = Q \Lambda Q^{-1} = Q \Lambda Q^T A=SΛS1=QΛQ1=QΛQT

    这种分解展示了对称矩阵的对称性,即 ( Q Λ Q T ) T = ( Q T ) T Λ T Q T = Q Λ Q T (Q \Lambda Q^T)^T = (Q^T)^T \Lambda^T Q^T = Q \Lambda Q^T (QΛQT)T=(QT)TΛTQT=QΛQT,它在数学上称为谱定理,在力学上称为主轴定理

    进一步推导有

    A = Q Λ Q T = [ ∣ ⋯ ∣ q ⃗ 1 ⋯ q ⃗ n ∣ ⋯ ∣ ] [ λ 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ λ n ] [ − q ⃗ 1 T − ⋯ ⋯ ⋯ − q ⃗ n T − ] = λ 1 q ⃗ 1 q ⃗ 1 T + λ 2 q ⃗ 2 q ⃗ 2 T + ⋯ + λ n q ⃗ n q ⃗ n T A = Q \Lambda Q^T = \begin{bmatrix} | & \cdots & | \\ \vec{q}_1 & \cdots & \vec{q}_n \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} - & \vec{q}_1^{T} & - \\ \cdots & \cdots & \cdots \\ - & \vec{q}_n^{T} & - \end{bmatrix} = \lambda_1 \vec{q}_1 \vec{q}_1^T + \lambda_2 \vec{q}_2 \vec{q}_2^T + \cdots + \lambda_n \vec{q}_n \vec{q}_n^T A=QΛQT= q 1q n λ100λn q 1Tq nT =λ1q 1q 1T+λ2q 2q 2T++λnq nq nT

    因为 q ⃗ 1 , q ⃗ 2 , ⋯   , q ⃗ n \vec{q}_1 , \vec{q}_2 , \cdots , \vec{q}_n q 1,q 2,,q n为单位向量,所以 q ⃗ 1 T q ⃗ 1 = ⋯ = q ⃗ n T q ⃗ n = 1 \vec{q}_1^T \vec{q}_1 = \cdots = \vec{q}_n^T \vec{q}_n = 1 q 1Tq 1==q nTq n=1,所以 q ⃗ 1 q ⃗ 1 T = q ⃗ 1 q ⃗ 1 T q ⃗ 1 T q ⃗ 1 , ⋯   , q ⃗ n q ⃗ n T = q ⃗ n q ⃗ n T q ⃗ n T q ⃗ n \vec{q}_1 \vec{q}_1^T = \dfrac{\vec{q}_1 \vec{q}_1^T}{\vec{q}_1^T \vec{q}_1} , \cdots , \vec{q}_n \vec{q}_n^T = \dfrac{\vec{q}_n \vec{q}_n^T}{\vec{q}_n^T \vec{q}_n} q 1q 1T=q 1Tq 1q 1q 1T,,q nq nT=q nTq nq nq nT,这样就把 q ⃗ 1 q ⃗ 1 T , ⋯   , q ⃗ n q ⃗ n T \vec{q}_1 \vec{q}_1^T , \cdots , \vec{q}_n \vec{q}_n^T q 1q 1T,,q nq nT看成了 q ⃗ 1 , q ⃗ 2 , ⋯   , q ⃗ n \vec{q}_1 , \vec{q}_2 , \cdots , \vec{q}_n q 1,q 2,,q n的投影矩阵,因而对称矩阵可以视为一些向量的投影矩阵的组合,这是人们理解谱定理的另一种办法

  3. 对称矩阵的主元中正负数个数分别与其特征值中正负数的个数一致

    证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明

    由此可以得到一种新的计算特征值的办法,对于对称矩阵 A A A,可以得到 A − n I A - nI AnI的主元中正负数分别有多少,从而分别知道 A A A有多少个特征值大于、小于 n n n,这样就可以把特征值逼到一定的精度内

  4. 正定矩阵

    正定矩阵:一个实对称矩阵 M M M,对于任意实非零向量 x ⃗ \vec{x} x 均满足 x ⃗ T M x ⃗ > 0 \vec{x}^T M \vec{x} > 0 x TMx >0,那么 M M M为正定矩阵

    • 正定矩阵的特征值和主元均为正实数

      证明: 见第 28 28 28

      • 正定矩阵的行列式也为正实数
    • 正定矩阵的所有子行列式均为正实数

      其中子行列式表示以该正定矩阵的第一个元素为第一个元素的子方阵的行列式

      证明: 暂时不会证明 \color{OrangeRed}暂时不会证明 暂时不会证明


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1295810.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux】echo命令使用

​echo命令 功能是在显示器上显示一段文字,一般起到一个提示的作用。此外,也可以直接在文件中写入要写的内容。也可以用于脚本编程时显示某一个变量的值,或者直接输出指定的字符串。 ​ 著者 由布莱恩福克斯和切特拉米撰写。 语法 echo […

peertalk Usbmux 资料收集与整理

Usbmux - The iPhone Wiki Usbmux During normal operations, iTunes communicates with the iPhone using something called “usbmux” – this is a system for multiplexing several “connections” over one USB pipe. Conceptually, it provides a TCP-like system –…

PHP基础 - 输入输出

在 PHP 中,有多种方法可以用来输出内容。下面是其中的几种: 1、echo: 这是最常见的输出语句之一,可以输出一个或多个字符串。它是一个语言结构,可以省略括号。使用示例如下: <?php // 使用 echo 语句输出一个字符串 echo "Hello, world!\n";// 可以使用…

中伟视界:皮带跑偏、异物检测AI算法除了矿山行业应用,还能在钢铁、火电、港口等行业中使用吗?

随着工业化的发展&#xff0c;皮带输送机已经成为各行业中不可或缺的重要设备&#xff0c;但是在使用过程中&#xff0c;由于各种原因&#xff0c;皮带常常出现跑偏问题&#xff0c;给生产运营带来了诸多困扰。不仅仅是矿山行业&#xff0c;钢铁、火电、港口等行业也都面临着皮…

C++异常剖析

什么是异常&#xff1f; 在程序运行的过程中&#xff0c;我们不可能保证我们的程序百分百不出现异常和错误&#xff0c;那么出现异常时该怎么报错&#xff0c;让我们知道是哪个地方错误了呢? C中就提供了异常处理的机制。 一、异常处理的关键字 &#xff08;1&#…

【Vue】vue整合element

上一篇&#xff1a; vue项目的创建 https://blog.csdn.net/m0_67930426/article/details/134816155 目录 整合过程 使用&#xff1a; 整合过程 项目创建完之后&#xff0c;使用编译器打开项目 在控制器里输入如下命令 npm install element-ui 如图表示安装完毕 然后在…

欧拉回路欧拉路【详解】

1.引入 2.概念 3.解决方法 4.例题 5.回顾 1.引入 经典的七桥问题 哥尼斯堡是位于普累格河上的一座城市&#xff0c;它包含两个岛屿及连接它们的七座桥&#xff0c;如下图所示。 可否走过这样的七座桥&#xff0c;而且每桥只走过一次&#xff1f; 你怎样证明&#xff1f;…

高性能队列框架-Disruptor使用、Netty结合Disruptor大幅提高数据处理性能

高性能队列框架-Disruptor 首先介绍一下 Disruptor 框架&#xff0c;Disruptor是一个通用解决方案&#xff0c;用于解决并发编程中的难题&#xff08;低延迟与高吞吐量&#xff09;&#xff0c;Disruptor 在高并发场景下性能表现很好&#xff0c;如果有这方面需要&#xff0c;…

wps word中图片 一保存失真变糊

在wps中依次点击 文件-文字偏好设置-常规与保存 勾选不压缩文件中的图像 并 将默认目标输出设置为220ppi 即可

FacetWP WordPress网站高级筛选过滤插件(含所有扩展)

点击阅读FacetWP WordPress网站高级筛选过滤插件原文 FacetWP WordPress网站高级筛选过滤插件向电子商务网站、资源库、搜索页面等添加分面搜索。FacetWP 的过滤元素&#xff08;称为 facets&#xff09;动态调整以适应用户输入。这有助于防止出现“未找到结果”&#xff0c;从…

剪切板管理 Paste中文 for Mac

Paste是一个方便的剪贴板管理工具&#xff0c;它可以帮助你更好地组织、查找和管理剪贴板中的内容。它提供了历史记录、搜索、组织、格式处理和云同步等功能&#xff0c;使你能够更高效地使用剪贴板&#xff0c;并节省时间和精力。无论是在个人使用还是团队协作中&#xff0c;P…

Gitlab+GitlabRunner搭建CICD自动化流水线将应用部署上Kubernetes

文章目录 安装Gitlab服务器准备安装版本安装依赖和暴露端口安装Gitlab修改Gitlab配置文件访问Gitlab 安装Gitlab Runner服务器准备安装版本安装依赖安装Gitlab Runner安装打包工具安装docker安装java17安装maven 注册Gitlab Runner 搭建自动化部署准备SpringBoot项目添加一个Co…

华媒舍:引擎霸屏推广,10个技巧帮助你登上霸者!

下面我们就向您介绍引擎霸屏推广&#xff0c;及其10个技巧&#xff0c;这种技巧将帮助你在市场上获得不菲的成绩。 引擎霸屏推广引擎霸屏推广是一种营销策略&#xff0c;希望通过规模性推广产品&#xff0c;帮助品牌在顾客脑中占主导地位。这是一种依靠检索引擎等途径&#xf…

总线(什么是南北桥?您都用过哪些总线?)

什么是总线&#xff1f; 计算机系统中的总线&#xff08;Bus&#xff09;是指计算机设备和设备之间传输信息的公共数据通道&#xff0c;是连接计算机硬件系统内多种设备的通信线路&#xff0c;它的一个重要特征是由总线上的所有设备共享&#xff0c;因此可以将计算机系统内的多…

嵌入版python作为便携计算器(安装及配置ipython)

今天用别的电脑调试C&#xff0c;需要计算反三角函数时发现没有趁手工具&#xff0c;忽然想用python作为便携计算器放在U盘&#xff0c;遂想到嵌入版python 懒得自己配可以直接下载&#xff0c;使用方法见第4节 1&#xff0c;下载embeddable python&#xff08;嵌入版python&…

[mysql]linux安装mysql5.7

之前安装的时候遇到了很多问题&#xff0c;浪费了一些时间。整理出这份教程&#xff0c;照着做基本一遍过。 这是安装包: 链接&#xff1a;https://pan.baidu.com/s/1gBuQBjA4R5qRYZKPKN3uXw?pwd1nuz 1.下载安装包&#xff0c;上传到linux。我这里就放到downloads目录下面…

循环单向链表与约瑟夫问题

循环链表介绍 先不急着看约瑟夫问题是什么&#xff0c;先了解循环链表的结构&#xff0c;那什么是循环链表&#xff1f; 循环&#xff0c;顾名思义&#xff0c;从链表中第一个节点出发&#xff0c;还会遇到第一个节点&#xff0c;形成循环的一环。也就是说链表中最后一个节点…

项目实战之RabbitMQ冗余双写架构

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;啥技术都喜欢捣鼓捣鼓&#xff0c;喜欢分享技术、经验、生活。 &#x1f60e;人生感悟&#xff1a;尝尽人生百味&#xff0c;方知世间冷暖。 &#x1f4d6;所属专栏&#xff1a;项…

12.6每日一题(备战蓝桥杯程序的控制结构)

12.6每日一题&#xff08;备战蓝桥杯程序的控制结构&#xff09; 题目 1638: 【入门】判断正负数或零题目描述输入输出样例输入样例输出来源/分类 题解 1638: 【入门】判断正负数或零题目 1348: 【入门】求绝对值题目描述输入输出样例输入样例输出来源/分类 题解 1348: 【入门】…

【教学类-35-05】17号的学号字帖(A4竖版1份)

作品展示&#xff1a; 背景需求&#xff1a; 大四班17号男孩目前无法自主数学数字。他表示自己能够认识数字&#xff0c;但不会写。 保育老师说&#xff1a;我曾经教过他&#xff0c;抓着手示范的。但是他记不住。家里估计也不练习的。年龄还没到&#xff0c;下学期再看看能不…