项目架构-六边形架构的概述和实现

news2025/1/19 23:11:14

使用传统的分层架构,我们的所有依赖项都指向一个方向,上面的每一层都依赖于下面的层。传输层将依赖于交互器,交互器将依赖于持久层。

在六边形架构中,所有依赖项都指向内部——我们的核心业务逻辑对传输层或数据源一无所知。尽管如此,传输层知道如何使用交互器,数据源知道如何符合存储库接口。

概述

最近在想着写一个个人项目,但是在项目的结构上却犯了难,此时翻到了一个视频,采用Hexagonal architecture(六边形架构),也被称为Ports and Adapters,大致就是下面图片的结构:

一共分为三层:

Domain: 里面放的是处理的基本逻辑,可以理解为大纲,它决定着Application和Framework的选择和实现

Application::它协调使用我们的Domain代码, 通过位于两者之间的方式,调整从framework到domain的请求

Framework: 为外部组件提供交互方式,驱动通常放在左边,被驱动放在右边

我们需要注意的是:

  1. 高层模块不应该依赖于低层模块。两者都应该依赖于抽象。
  2. 抽象不应该依赖于细节。细节应该依赖于抽象。
  3. 在驱动侧,适配器依赖于端口,由应用程序服务实现,因此适配器不知道谁会响应其调用,它只知道有哪些方法是保证可用的,因此它依赖于抽象。
  4. 在被驱动侧,应用程序服务依赖于端口,而适配器则实现端口的接口,有效地反转了依赖关系,因为“低级”适配器(即数据库存储库)被迫实现应用程序核心中定义的抽象,这是“高级”的。

所以我们的项目目录会像这样:

例子

这里我们也能看出六边形架构的另外一个称呼:Ports and Adapters的原因,适配器实现端口(通常为接口),以达到代码解耦的作用,下面将以上面的目录进行具体的例子讲解:

完整代码:link

本项目很简单,就是实现一个简单加减乘除的运算和数据库保存,那么我们秉持着核心domain层统领一切,适配器实现端口的原则,我们先定义 ./ports/core.go:

package ports

type ArithmeticPort interface {
	Addition(a int32, b int32) (int32, error)
	Subtraction(a int32, b int32) (int32, error)
	Multiplication(a int32, b int32) (int32, error)
	Division(a int32, b int32) (int32, error)
}

有了接口我们就得配以适配器 ./adapters/core/arithmetic/arithmetic.go:

type Adapter struct {
}

func NewAdapter() *Adapter {
	return &Adapter{}
}

func (Arith Adapter) Addition(a int32, b int32) (int32, error) {
	return a + b, nil
}

func (Arith Adapter) Subtraction(a int32, b int32) (int32, error) {
	return a - b, nil
}

func (Arith Adapter) Multiplication(a int32, b int32) (int32, error) {
	return a * b, nil
}

func (Arith Adapter) Division(a int32, b int32) (int32, error) {
	return a / b, nil
}

这便是我们的核心逻辑,当项目慢慢变大时,核心层逻辑也会越来越多。

接下来就到了应用层,当我们实现了运算,那么便需要拿到结果,注意:此时还用不到sql,所以我们把目的写进 ./ports/app.go:

type APIPort interface {
	GetAddition(a int32, b int32) (int32, error)
	GetSubtraction(a int32, b int32) (int32, error)
	GetMultiplication(a int32, b int32) (int32, error)
	GetDivision(a int32, b int32) (int32, error)
}

之后适配器实现:

type Adapter struct {
	// depedencies injection
	arith ports.ArithmeticPort
	db    ports.DBPort
}

func NewAdapter(db ports.DBPort, arith ports.ArithmeticPort) *Adapter {
	return &Adapter{
		db:    db,
		arith: arith,
	}
}

func (api Adapter) GetAddition(a int32, b int32) (int32, error) {
	answer, err := api.arith.Addition(a, b)
	err = api.db.AddToHistory(answer, "addition")
	if err != nil {
		return 0, err
	}
	return answer, nil
}

func (api Adapter) GetSubtraction(a int32, b int32) (int32, error) {
	answer, err := api.arith.Subtraction(a, b)
	err = api.db.AddToHistory(answer, "subtraction")
	if err != nil {
		return 0, err
	}
	return answer, nil
}

func (api Adapter) GetMultiplication(a int32, b int32) (int32, error) {
	return api.arith.Multiplication(a, b)
}

func (api Adapter) GetDivision(a int32, b int32) (int32, error) {
	return api.arith.Division(a, b)
}

然后就到了用依赖的时候了,也就是framework,本文就讲讲mysql的CRUD:

// internal/ports/framework_right.go
package ports

type DBPort interface {
	CloseDBConnection()
	AddToHistory(answer int32, operation string) error
}

然后实现:

//internal/adapters/framework/right/db/db.go
package db

type Adapter struct {
	db *sql.DB
}

func NewAdapter(driverName, dataSourceName string) (*Adapter, error) {
	// connect to db
	db, err := sql.Open(driverName, dataSourceName)
	...
}

func (da Adapter) AddToHistory(answer int32, operation string) error {
	stmt, err := da.db.Prepare("INSERT INTO history (data, answer, opration) VALUES (?,?,?)")
	...
}

之后我们编写测试文件,进行测试,通常情况一个适配器配一个测试文件

基本都创建好之后,如何连接呢?

我们在cmd文件中创建一个main.go:连接所有端口和适配器代码的地方,将依赖项注入到需要的层中,例如将数据库注入到framework层

这样实现了代码的解耦,例如我们想换一个数据库,只需要更换数据库名和数据源名,其余不需要修改,同时我们的业务逻辑也不需要了解特定的数据源限制

总结

所以总结一下优点:

  1. 能够封装数据源实现细节
  2. 长期稳定性和可扩展性,因为只需少许更改,所以在微服务部署失败时很容易回滚,也可以直接通过配置文件决定数据源

但是他也并不是silver bullet,我们应该多多检测层之间的漏洞,预防逻辑泄露等问题

参考文章&&学习视频

Ready for changes with Hexagonal Architecture

Hexagonal Architecture, there are always two sides to every story

How To Structure Your Go App - Full Course [ Hex Arch + Tests ]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1293489.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【推荐系统】了解推荐系统的生态(重点:推荐算法的主要分类)

【大家好,我是爱干饭的猿,本文重点介绍推荐系统的关键元素和思维模式、推荐算法的主要分类、推荐系统常见的问题、推荐系统效果评测。 后续会继续分享其他重要知识点总结,如果喜欢这篇文章,点个赞👍,关注一…

【webpack】应用篇

基础应用 代码分离常用的代码分离方法方法一:配置入口节点方法二:防止重复方法三:动态导入 缓存原因解决思路 缓存第三方库原因解决思路 将所有js文件单独存放文件夹拆分开发环境和生产环境配置公共路径环境变量和区分环境代码压缩 拆分配置文…

2023五岳杯量子计算挑战赛数学建模思路+代码+模型+论文

目录 计算力网络(CPN)是一种新型的信息基础设施,完整论文代码见文末 问题描述 2.1 问题1 2.2 问题2 2.3 问题3 问题1的解答过程: 问题3的解答过程: 决策优化应用场景:人工智能模型超参数调优 背景信…

HarmonyOS系统架构及项目结构浅析

语雀知识库地址:语雀HarmonyOS知识库 飞书知识库地址:飞书HarmonyOS知识库 基本概念 UI框架 HarmonyOS提供了一套UI开发框架,即方舟开发框架(ArkUI框架)。方舟开发框架可为开发者提供应用UI开发所必需的能力&#xf…

深度学习实战66-基于计算机视觉的自动驾驶技术,利用YOLOP模型实现车辆区域检测框、可行驶区域和车道线分割图

大家好,我是微学AI,今天给大家介绍一下深度学习实战66-基于计算机视觉的自动驾驶技术,利用YOLOP模型实现车辆区域检测框、可行驶区域和车道线分割图。本文我将介绍自动驾驶技术及其应用场景,并重点阐述了基于计算机视觉技术下的自动驾驶。自动驾驶技术是一种利用人工智能和…

在jupyter notebook中修改其他文件的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

探索Vue小程序框架的底层原理

最近晚上有时间复盘之前研究小程序框架的相关内容,总结文章记录一下。 本篇文章主要介绍百度19年开源的Mars小程序开发框架,和Taro、mpvue、uniapp类似,都是编译型小程序框架,都是通过将 Vue 或 React 源码直接编译为小程序源码&a…

基于FPGA的温度控制系统设计(论文+源码)

1.系统设计 本次基于FPGA的智能温度控制系统,以FPGA为控制核心,采用自顶向下的设计方法,按照模块化设计的思路分别实现各个模块,再加以整合实现整个系统,从而达到了温度控制的目的。系统以水箱为被控对象,…

深入探索C语言中的二叉树:数据结构之旅

引言 在计算机科学领域,数据结构是基础中的基础。在众多数据结构中,二叉树因其在各种操作中的高效性而脱颖而出。二叉树是一种特殊的树形结构,每个节点最多有两个子节点:左子节点和右子节点。这种结构使得搜索、插入、删除等操作…

《机器学习实战》MNIST 数据集的导入方法

1、在网上下载数据集 mnister 数据集有两个类型, (1)一个是手写的阿拉伯数字图片:MNIST 下载地址: 链接:https://pan.baidu.com/s/1dd-I-laysPbT8wxbyvxTvg 提取码:1234 (2…

深度解析 Kafka 消息保证机制

Kafka作为分布式流处理平台的重要组成部分,其消息保证机制是保障数据可靠性、一致性和顺序性的核心。在本文中,将深入探讨Kafka的消息保证机制,并通过丰富的示例代码展示其在实际应用中的强大功能。 生产者端消息保证 1 At Most Once &quo…

Android 13 Settings蓝牙列表卡顿问题排查及优化过程

一.背景 此问题是蓝牙列表界面息屏后再点击亮屏蓝牙界面卡住,划不动也不能返回,在人多的时候(附近开启的蓝牙设备过多的时候)会卡住大概四五秒才能滑动. 优化前效果见资源: 二.查找耗时点 根据Android Studio的Profiler工具进行排查,查找主线程时间线比较长的方法,如下:…

记录 | centos源码编译bazel

tensorflow的源码编译依赖于 bazel 这里进行 bazel 的源码编译 1、安装依赖 sudo yum install -y java-11-openjdk sudo yum install -y java-11-openjdk-devel sudo yum install -y protobuf-compiler zip unzip2、知悉要安装的 bazel 的版本 务必安装受支持的 Bazel 版本…

展望2024年供应链安全

2023年是开展供应链安全,尤其是开源治理如火如荼的一年,开源治理是供应链安全最重要的一个方面,所以我们从开源治理谈起。我们先回顾一下2023的开源治理情况。我们从信通院《2023年中国企业开源治理全景观察》发布的信息。信通院调研了来自七…

linux安装mysql5.7(一遍过)

之前安装的时候遇到了很多问题,浪费了一些时间。整理出这份教程,照着做基本一遍过。 这是安装包: 链接:https://pan.baidu.com/s/1gBuQBjA4R5qRYZKPKN3uXw?pwd1nuz 1.下载安装包,上传到linux。我这里就放到downloads目录下面…

软著项目推荐 疫情数据分析与3D可视化 - python 大数据

文章目录 0 前言1 课题背景2 实现效果3 设计原理4 部分代码5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 大数据全国疫情数据分析与3D可视化 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐&#xff0…

Google Bard vs. ChatGPT 4.0:文献检索、文献推荐功能对比

在这篇博客中,我们将探讨和比较四个不同的人工智能模型——ChatGPT 3.5、ChatGPT 4.0、ChatGPT 4.0插件和Google Bard。我们将通过三个问题的测试结果来评估它们在处理特定任务时的效能和响应速度。 导航 问题 1: 统计自Vehicle Routing Problem (VRP)第一篇文章发…

【Flink系列二】如何计算Job并行度及slots数量

接上文的问题 并行的任务,需要占用多少slot ?一个流处理程序,需要包含多少个任务 首先明确一下概念 slot:TM上分配资源的最小单元,它代表的是资源(比如1G内存,而非线程的概念,好多…

设备制造行业CRM:提升客户满意度,驱动业务增长

设备制造行业客户需求多样化、服务链路长,企业在关注APS、EMS等工业软件之余还要以客户为中心,做好客户服务。设备制造行业CRM管理系统是企业管理客户关系的利器,设备制造行业CRM的作用有哪些?一文带您看懂。 设备制造行业需要解…

【深度学习】强化学习(一)强化学习定义

文章目录 一、强化学习问题1、交互的对象1. 智能体(Agent)2. 环境(Environment) 2、强化学习的基本要素1. 状态 𝑠2. 动作 𝑎3. 策略 𝜋(𝑎|𝑠)4. 状态转移概率 &#x1…