netty07-粘包半包以及解决方案

news2025/1/11 9:47:58

粘包指的是发送方在发送数据时,多个数据包被合并成一个大的数据包发送到接收方,接收方在接收时无法准确地区分各个数据包的边界,从而导致数据粘在一起。

半包指的是发送方发送的数据包被拆分成了多个小的数据包,在接收方接收时,无法完整地接收到一个数据包,导致数据包的边界不完整,出现了"半个"数据包。

现象分析

粘包
  • 现象
    • 发送 abc def,接收 abcdef
  • 原因
    • 应用层
      • 接收方 ByteBuf 设置太大(Netty 默认 1024)
    • 传输层-网络层
      • 滑动窗口:假设发送方 256 bytes 表示一个完整报文,但由于接收方处理不及时且**窗口大小足够大(大于256 bytes),这 256 bytes 字节就会缓冲在接收方的滑动窗口中,**当滑动窗口中缓冲了多个报文就会粘包
      • Nagle 算法:会造成粘包
半包
  • 现象
    • 发送 abcdef,接收 abc def
  • 原因
    • 应用层
      • 接收方 ByteBuf 小于实际发送数据量
    • 传输层-网络层
      • 滑动窗口:假设接收方的窗口只剩了 128 bytes,发送方的报文大小是 256 bytes,这时接收方窗口中无法容纳发送方的全部报文,发送方只能先发送前 128 bytes,等待 ack 后才能发送剩余部分,这就造成了半包
    • 数据链路层
      • MSS 限制:当发送的数据超过 MSS 限制后,会将数据切分发送,就会造成半包
本质

发生粘包与半包现象的本质是因为 TCP 是流式协议,消息无边界

具体原因

​ 由于TCP协议本身的机制(面向连接的可靠地协议-三次握手机制)客户端与服务器会维持一个连接(Channel),数据在连接不断开的情况下,可以持续不断地将多个数据包发往服务器,但是如果发送的网络数据包太小,那么他本身会启用Nagle算法(可配置是否启用)对较小的数据包进行合并(基于此,TCP的网络延迟要UDP的高些)然后再发送(超时或者包大小足够)。那么这样的话,服务器在接收到消息(数据流)的时候就无法区分哪些数据包是客户端自己分开发送的,这样产生了粘包;服务器在接收到数据库后,放到缓冲区中,如果消息没有被及时从缓存区取走,下次在取数据的时候可能就会出现一次取出多个数据包的情况,造成粘包现象。

而对于UDP,本身作为无连接的不可靠的传输协议(适合频繁发送较小的数据包),他不会对数据包进行合并发送(也就没有Nagle算法之说了),他直接是一端发送什么数据,直接就发出去了,既然他不会对数据合并,每一个数据包都是完整的(数据+UDP头+IP头等等发一次数据封装一次)也就没有粘包一说了。

半包产生的原因就简单的多:可能是IP分片传输导致的,也可能是传输过程中丢失部分包导致出现的半包,还有可能就是一个包可能被分成了两次传输,在取数据的时候,先取到了一部分(还可能与接收的缓冲区大小有关系),总之就是一个数据包被分成了多次接收。

发生TCP粘包或拆包有很多原因,但是常见原因无非就是:

1、要发送的数据大于TCP发送缓冲区剩余空间大小,将会发生拆包。

2、待发送数据大于MSS(最大报文长度),TCP在传输前将进行拆包。

3、要发送的数据小于TCP发送缓冲区的大小,TCP将多次写入缓冲区的数据一次发送出去,将会发生粘包。

4、接收数据端的应用层没有及时读取接收缓冲区中的数据,将发生粘包。

粘包与半包的解决方法

1 短链接

客户端每次向服务器发送数据以后,就与服务器断开连接,此时的消息边界为连接建立到连接断开。这时便无需使用滑动窗口等技术来缓冲数据,则不会发生粘包现象。但如果一次性数据发送过多,接收方无法一次性容纳所有数据,还是会发生半包现象,所以短链接无法解决半包现象(UDP)

2 使用分隔符

在数据包中添加边界:在数据包中添加特殊的边界符号,如换行符或者其他特殊字符,接收方根据边界符号来切分数据包

行解码器

行解码器的是通过分隔符对数据进行拆分来解决粘包半包问题的

可以通过LineBasedFrameDecoder(int maxLength)来拆分以换行符(\n)为分隔符的数据,也可以通过DelimiterBasedFrameDecoder(int maxFrameLength, ByteBuf... delimiters)指定通过什么分隔符来拆分数据(可以传入多个分隔符)

两种解码器都需要传入数据的最大长度,若超出最大长度,会抛出TooLongFrameException异常

3 定长解码器

客户端于服务器约定一个最大长度,保证客户端每次发送的数据长度都不会大于该长度。若发送数据长度不足则需要补齐至该长度

服务器接收数据时,将接收到的数据按照约定的最大长度进行拆分,即使发送过程中产生了粘包,也可以通过定长解码器将数据正确地进行拆分。服务端需要用到FixedLengthFrameDecoder对数据进行定长解码,具体使用方法如下

ch.pipeline().addLast(new FixedLengthFrameDecoder(16));

客户端代码

客户端发送数据的代码如下

// 约定最大长度为16
final int maxLength = 16;
// 被发送的数据
char c = 'a';
// 向服务器发送10个报文
for (int i = 0; i < 10; i++) {
    ByteBuf buffer = ctx.alloc().buffer(maxLength);
    // 定长byte数组,未使用部分会以0进行填充
    byte[] bytes = new byte[maxLength];
    // 生成长度为0~15的数据
    for (int j = 0; j < (int)(Math.random()*(maxLength-1)); j++) {
        bytes[j] = (byte) c;
    }
    buffer.writeBytes(bytes);
    c++;
    // 将数据发送给服务器
    ctx.writeAndFlush(buffer);
}Copy

服务器代码

使用FixedLengthFrameDecoder对粘包数据进行拆分

// 通过定长解码器对粘包数据进行拆分
ch.pipeline().addLast(new FixedLengthFrameDecoder(16));

长度字段解码器

在传送数据时可以在数据中添加一个用于表示有用数据长度的字段,在解码时读取出这个用于表明长度的字段,同时读取其他相关参数,即可知道最终需要的数据是什么样子的

LengthFieldBasedFrameDecoder解码器可以提供更为丰富的拆分方法,其构造方法有五个参数

public LengthFieldBasedFrameDecoder(
    int maxFrameLength,
    int lengthFieldOffset, int lengthFieldLength,
    int lengthAdjustment, int initialBytesToStrip)Copy

参数解析

  • maxFrameLength 数据最大长度
    • 表示数据的最大长度(包括附加信息、长度标识等内容)
  • lengthFieldOffset 数据长度标识的起始偏移量
    • 用于指明数据第几个字节开始是用于标识有用字节长度的,因为前面可能还有其他附加信息
  • lengthFieldLength 数据长度标识所占字节数(用于指明有用数据的长度)
    • 数据中用于表示有用数据长度的标识所占的字节数
  • lengthAdjustment 长度表示与有用数据的偏移量
    • 用于指明数据长度标识和有用数据之间的距离,因为两者之间还可能有附加信息
  • initialBytesToStrip 数据读取起点
    • 读取起点,不读取 0 ~ initialBytesToStrip 之间的数据

参数图解

img

lengthFieldOffset   = 0
lengthFieldLength   = 2
lengthAdjustment    = 0
initialBytesToStrip = 0 (= do not strip header)
  
BEFORE DECODE (14 bytes)         AFTER DECODE (14 bytes)
+--------+----------------+      +--------+----------------+
| Length | Actual Content |----->| Length | Actual Content |
| 0x000C | "HELLO, WORLD" |      | 0x000C | "HELLO, WORLD" |
+--------+----------------+      +--------+----------------+Copy

从0开始即为长度标识,长度标识长度为2个字节

0x000C 即为后面 HELLO, WORLD的长度


lengthFieldOffset   = 0
lengthFieldLength   = 2
lengthAdjustment    = 0
initialBytesToStrip = 2 (= the length of the Length field)
  
BEFORE DECODE (14 bytes)         AFTER DECODE (12 bytes)
+--------+----------------+      +----------------+
| Length | Actual Content |----->| Actual Content |
| 0x000C | "HELLO, WORLD" |      | "HELLO, WORLD" |
+--------+----------------+      +----------------+Copy

从0开始即为长度标识,长度标识长度为2个字节,读取时从第二个字节开始读取(此处即跳过长度标识)

因为跳过了用于表示长度的2个字节,所以此处直接读取HELLO, WORLD


lengthFieldOffset   = 2 (= the length of Header 1)
lengthFieldLength   = 3
lengthAdjustment    = 0
initialBytesToStrip = 0
  
BEFORE DECODE (17 bytes)                      AFTER DECODE (17 bytes)
+----------+----------+----------------+      +----------+----------+----------------+
| Header 1 |  Length  | Actual Content |----->| Header 1 |  Length  | Actual Content |
|  0xCAFE  | 0x00000C | "HELLO, WORLD" |      |  0xCAFE  | 0x00000C | "HELLO, WORLD" |
+----------+----------+----------------+      +----------+----------+----------------+Copy

长度标识前面还有2个字节的其他内容(0xCAFE),第三个字节开始才是长度标识,长度表示长度为3个字节(0x00000C)

Header1中有附加信息,读取长度标识时需要跳过这些附加信息来获取长度


lengthFieldOffset   = 0
lengthFieldLength   = 3
lengthAdjustment    = 2 (= the length of Header 1)
initialBytesToStrip = 0
  
BEFORE DECODE (17 bytes)                      AFTER DECODE (17 bytes)
+----------+----------+----------------+      +----------+----------+----------------+
|  Length  | Header 1 | Actual Content |----->|  Length  | Header 1 | Actual Content |
| 0x00000C |  0xCAFE  | "HELLO, WORLD" |      | 0x00000C |  0xCAFE  | "HELLO, WORLD" |
+----------+----------+----------------+      +----------+----------+----------------+Copy

从0开始即为长度标识,长度标识长度为3个字节,长度标识之后还有2个字节的其他内容(0xCAFE)

长度标识(0x00000C)表示的是从其后lengthAdjustment(2个字节)开始的数据的长度,即HELLO, WORLD,不包括0xCAFE


lengthFieldOffset   = 1 (= the length of HDR1)
lengthFieldLength   = 2
lengthAdjustment    = 1 (= the length of HDR2)
initialBytesToStrip = 3 (= the length of HDR1 + LEN)
  
BEFORE DECODE (16 bytes)                       AFTER DECODE (13 bytes)
+------+--------+------+----------------+      +------+----------------+
| HDR1 | Length | HDR2 | Actual Content |----->| HDR2 | Actual Content |
| 0xCA | 0x000C | 0xFE | "HELLO, WORLD" |      | 0xFE | "HELLO, WORLD" |
+------+--------+------+----------------+      +------+----------------+Copy

长度标识前面有1个字节的其他内容,后面也有1个字节的其他内容,读取时从长度标识之后3个字节处开始读取,即读取 0xFE HELLO, WORLD

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1292289.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用VS Code远程开发MENJA小游戏并通过内网穿透分享本地游戏到公网

文章目录 前言1. 编写MENJA小游戏2. 安装cpolar内网穿透3. 配置MENJA小游戏公网访问地址4. 实现公网访问MENJA小游戏5. 固定MENJA小游戏公网地址 推荐一个人工智能学习网站 点击跳转学习 前言 本篇教程&#xff0c;我们将通过VS Code实现远程开发MENJA小游戏&#xff0c;并通…

11月榜单亮点:单场直播GMV超过5亿,30+达人粉丝增长100万人

11月&#xff0c;在双11好物节的加持下&#xff0c;品牌商家业绩再创新高。 数据报告显示&#xff0c;10月20日至11月11日&#xff0c;抖音商城GMV同比增长119%&#xff0c;直播间累计时长达到5827万小时&#xff0c;越来越多的用户正通过抖音参与双11购物狂潮&#xff0c;而越…

《opencv实用探索·十三》opencv之canny边缘检测

1、canny边缘检测应用场景 目标检测&#xff1a; Canny边缘检测可以用于检测图像中的目标边缘&#xff0c;从而帮助识别和定位物体。在目标检测的流程中&#xff0c;边缘通常是检测的第一步。 图像分割&#xff1a; Canny边缘检测可用于图像分割&#xff0c;即将图像划分为具有…

国外企业电子邮箱使用情况:推荐与优缺点分析

Zoho Mail是专门为国际邮箱设计的电子邮件服务&#xff0c;具有多语言支持、多域名支持、全球数据中心、安全隐私保护、大容量存储、邮件过滤和排序等优点。 一、多语言支持&#xff1a; Zoho Mail提供多种语言界面&#xff0c;包括英语、汉语、西班牙语、法语、德语等&#xf…

毕业设计全流程!

先看一眼时间线&#xff1a; 1

代码随想录算法训练营第三十七天|1049. 最后一块石头的重量 II ,494. 目标和,474.一和零

1049. 最后一块石头的重量 II - 力扣&#xff08;LeetCode&#xff09; 有一堆石头&#xff0c;用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分别为 x 和 y&am…

Java常见算法和lambda

查找算法 public class day11 {public static void main(String[] args) {//基本查找 / 顺序差宅//核心://从0索引开始挨个往后查找//需求:定义一个方法利用基本查找 查询某个元素是否存在//数据如下:{131,127,147,81,103,23,7,79}int[] arr{131,127,147,81,103,23,7,79};int…

全志H6-ARMLinux第1天:全志概述、刷机登陆、官方外设库、蜂鸣器、超声波测距

1. 全志H616课程概述&#xff08;456.01&#xff09; 1.1 为什么学 学习目标依然是Linux系统&#xff0c;平台是ARM架构 蜂巢快递柜&#xff0c;配送机器人&#xff0c;这些应用场景用 C51、STM32 单片机无法实现第三方介入库的局限性&#xff0c;比如刷脸支付和公交车收费设…

超级好用的IDEA插件推荐

IDEA是一款功能强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它可以帮助开发人员更加高效地编写、调试和部署软件应用程序。我们在编写完接口代码后需要进行接口调试等操作&#xff0c;一般需要打开额外的调试工具。 今天给大家介绍一款IDEA插件&#xff1a;Api…

Vulnhub项目:EMPIRE: BREAKOUT

一、靶机地址 靶机地址&#xff1a;Empire: Breakout ~ VulnHub 靶机介绍&#xff1a; 该靶机被定义为简单&#xff0c;但是如果没有找到&#xff0c;那就难度成中等了&#xff01; 二、渗透过程 老三样&#xff0c;发现目标&#xff0c;这里用 arp-scan 确定靶机 ip&#…

网络通信的流程,浏览器地址?

1.没有交换机的通信 在一个机房内,有两台电脑相互需要通信 假设现在有三台电脑: 随着电脑的增加,线的数量也在增加,因此显得很臃肿&#xff0c;次数交换机诞生&#xff0c;很好的解决了这一方面&#xff0c; 交换机不需要进行多条线的连接: 通过给设备分配,ip地址来实现局域网…

麻辣香锅病毒处置

1. 前言 今天早上正忙着&#xff0c;上级领导通知&#xff0c;说态势感知发现2023-12-05 18:40:50 主机X.X.93.21遭受攻击&#xff0c;攻击者为X.X.0.7后迅速开展检查&#xff0c;核实确认。 2. 原因分析 这里我从态势感知上看是IP&#xff1a;X.X.93.21去攻击IP&#xff1a;…

springboot 在自定义注解中注入bean,解决注入bean为null的问题

问题&#xff1a; 在我们开发过程中总会遇到比如在某些场合中需要使用service或者mapper等读取数据库&#xff0c;或者某些自动注入bean失效的情况 解决方法&#xff1a; 1.在构造方法中通过工具类获取需要的bean 工具类代码&#xff1a; import org.springframework.beans…

制药企业的设备健康管理系统为何要符合计算机化系统验证CSV?

在制药行业&#xff0c;设备健康管理对于确保生产过程的可靠性和质量至关重要。为了有效管理和监控设备的状态&#xff0c;制药企业常常采用设备健康管理系统。然而&#xff0c;这些系统的可靠性和合规性需要通过计算机化系统验证&#xff08;CSV&#xff09;进行验证。本文将探…

STM32——定时器Timer

定时器工作原理 软件定时 缺点&#xff1a;不精确、占用 CPU 资源 void Delay500ms() //11.0592MHz {unsigned char i, j, k;_nop_();i 4;j 129;k 119;do{do{while (--k);} while (--j);} while (--i); } 使用精准的时基&#xff0c;通过硬件的方式&#xff0c;实现定时功…

消费1000返1500元,买了4罐奶粉倒赚商家2000元?商家亏吗?

大家好&#xff0c;我是微三云胡佳东&#xff0c;一个深耕私域电商模式玩法的互联网人&#xff01;&#xff01; 在当前的全球经济环境下&#xff0c;消费增值的概念正逐渐受到广泛的关注。这一模式的崛起&#xff0c;不仅仅是一种商业模式的创新&#xff0c;更代表着我们对经…

(十五)Flask覆写wsgi_app函数实现自定义中间件

中间件 一、剖析&#xff1a; 在前面讲session部分提到过&#xff1a;请求一进来&#xff0c;Flask会自动调用应用程序对象【Flask(__name__)】的__call__方法&#xff0c;这个方法负责处理请求并返回响应&#xff08;其实如下图&#xff1a;其内部就是wsgi_app方法&#xff…

报表多源关联

报表多源关联 需求背景 在项目中会遇到多种数据展现在一起的报表。例如部分指标在关系型数据库中&#xff0c;部分指标通过restful接口获得到json&#xff0c;然后根据共同的维度关联一起&#xff0c;形成新的数据集。 解决方案 在硕迪报表中有两种方式实现该多源报表&…

UI自动化测试工具的定义及重要性

UI自动化测试工具在现代软件开发中起着不可或缺的作用。它们能够提高测试效率、减少人为错误、提供全面的测试覆盖&#xff0c;并支持持续集成。通过有效使用UI自动化测试工具&#xff0c;开发团队可以提高软件质量&#xff0c;提供更可靠的应用程序&#xff0c;满足用户的需求…

C语言内存函数讲解

目录 文章目录 内存函数针对的数据类型不确定可能是整型数据&#xff0c;字符数据&#xff0c;结构体数据...... memcpy的使用和模拟实现 memcpy的使用 memcpy打印字符数据 memcpy打印整型数据 memcpy的模拟实现 模拟实现的memcpy打印重叠情境 memmove的使用和模拟实现 memm…