《opencv实用探索·十三》opencv之canny边缘检测

news2025/1/11 9:53:16

1、canny边缘检测应用场景

目标检测:
Canny边缘检测可以用于检测图像中的目标边缘,从而帮助识别和定位物体。在目标检测的流程中,边缘通常是检测的第一步。
图像分割:
Canny边缘检测可用于图像分割,即将图像划分为具有相似属性的区域。图像分割是许多计算机视觉任务的基础,如图像分析、物体识别等。
图像增强:
Canny边缘检测可以突出图像中的边缘特征,从而增强图像的结构信息。这对于图像处理任务,如图像重建和特征提取,非常有帮助。
边缘跟踪:
Canny边缘检测是一种强边缘跟踪器,可以用于跟踪图像中的曲线和边缘。
机器视觉和自动驾驶: 在机器视觉和自动驾驶系统中,Canny边缘检测可用于检测道路边缘、车辆和行人等物体。
医学图像处理:
在医学图像中,Canny边缘检测用于检测器官的边缘,从而协助医生进行诊断和手术规划。
光学字符识别(OCR):
在文字识别领域,Canny边缘检测可用于提取文本的边缘,以帮助进行光学字符识别。
图像分析:
Canny边缘检测在图像分析中是一种常见的工具,用于提取图像的重要特征。

2、canny边缘检测步骤
(1)噪声抑制:
在进行边缘检测之前,通常会对图像进行平滑以抑制噪声。这通常使用高斯滤波器来实现,可以通过cv::GaussianBlur函数完成。
(2)计算图像梯度:
使用Sobel算子计算图像在水平和垂直方向上的梯度。这个过程可以通过cv::Sobel函数实现。
(3)计算梯度的幅值和方向:
根据梯度的水平和垂直分量,计算梯度的幅值和方向。这可以通过cv::magnitude和cv::phase实现。
(4)非极大值抑制:
对梯度幅值图进行非极大值抑制,保留梯度方向上的局部最大值。这一步骤有助于细化边缘,使其更接近实际的边界。
(5)双阈值边缘跟踪:
根据设定的两个阈值(高阈值和低阈值),对非极大值抑制后的图像进行阈值处理,得到二值图像。高阈值用于确定强边缘,低阈值用于确定可能的边缘。通常,高阈值选取的较高,低阈值选取的较低。
(6)边缘连接:
对低阈值下的边缘像素进行连接,使其连接到高阈值下的边缘。这一步骤可以使用递归或迭代方法实现。

对于高斯滤波和梯度计算在之前的章节已经阐述过,请点击高斯滤波和梯度计算进行回顾。

这里解释下什么是梯度幅值和方向:
边缘检测算子返回水平方向的Gx和垂直方向的Gy。梯度的幅度𝐺和方向𝛩(用角度值表示)为:
在这里插入图片描述
式中,atan2(•)表示具有两个参数的 arctan 函数。

梯度幅值是梯度矢量的长度,表示图像在某一点的强度变化的大小,梯度的方向总是与边缘垂直的,通常就近取值为水平(左、右)、垂直(上、下)、对角线(右上、左上、左下、右下)等 8 个不同的方向。

因此,在计算梯度时,我们会得到梯度的幅度和角度(代表梯度的方向)两个值。

下图展示了梯度的表示法。其中,每一个梯度包含幅度和角度两个不同的值。为了方便观察,这里使用了可视化表示方法。例如,左上角顶点的值“2↑”实际上表示的是一个二元数对“(2, 90)”,表示梯度的幅度为 2,角度为 90°。
在这里插入图片描述

非极大值像素梯度抑制:
在具体实现时,逐一遍历像素点,判断当前像素点是否是周围像素点中具有相同梯度方向的最大值,并根据判断结果决定是否抑制该点。如果当前像素点是周围像素点中最大值,我们保留该像素值,否则将其抑制为零。

例如A、B、C 三点具有相同的方向(梯度方向垂直于边缘)如下图。判断这三个点是否为各自的局部最大值:如果是,则保留该点;否则,抑制该点(归零)。
在这里插入图片描述
从图中可以看到A点在图像边缘,所以A 点具有最大的局部值,所以保留 A 点(称为边缘),其余两点(B和 C)被抑制(归零)。

再比如下图中,黑色背景的点都是向上方向梯度(边缘处于水平)的局部最大值。因此,这些点会被保留;其余点被抑制(处理为 0)。这意味着,这些黑色背景的点最终会被处理为边缘点,而其他点都被处理为非边缘点。
在这里插入图片描述
经过上述处理后,对于同一个方向的若干个边缘点,基本上仅保留了一个,使得检测到的边缘更狭窄,更接近实际的边界。

当完成非极大值抑制后,只保留了效果明显的边缘,然而,对于这些边缘,有些确实是图像的边缘,而有些却是由噪声产生的。之前用高斯滤波只是降噪,并不能消除噪声。而这些噪声造成的边缘被称为虚边缘,我们需要通过双值域将其消除。

双阈值设置:
首先设置两个阈值:高阈值(highThreshold)和低阈值(lowThreshold),高阈值用于确定强边缘,低阈值用于确定可能的边缘。对于所有的像素点,逐一遍历,如果当前边缘像素的梯度值 大于高阈值定为强边缘, 低于高阈值但是高于低阈值被定为虚边缘, 低于低阈值的像素点(抑制)置零。
所有的强边缘保留,而对于虚边缘,我们要做个判断。如果这些虚边缘是连接着强边缘的,那么保留,如果不是,那么抑制(置零)。

下面以一个示例图来说明。
图中Max和Min表示高低阈值,A在Max上面为强边缘直接保留,B在Max和Min之间为虚边缘,但B连着B,故也认定为边缘,保留。C也处于Max和Min之间,但C和A没有连接,故认定C不是边缘,被抑制。D之间小于低阈值,之间被抑制为0。

最后进行边缘连接,其过程如下:
(1)遍历经过非极大值抑制后的梯度幅值图像(图像经过非极大值抑制后只有边缘上的像素点的梯度幅值被保留,其他像素点的梯度幅值为零。)
(2)将大于高阈值的像素点标记为强边缘,高低阈值之间的像素值标记为弱边缘。
(3)从弱边缘像素出发,沿着其梯度方向前进,如果相邻像素中有强边缘像素(梯度幅值大于高阈值),则将其标记为强边缘,并继续追踪。追踪过程中,可能的边缘像素逐渐被标记为强边缘,形成一个连接的边缘。
(4)重复以上步骤,直到没有新的像素被添加到连接的边缘。最终,连接的边缘像素集合就是Canny边缘检测算法的输出。

3、opencv之canny接口调用

void cv::Canny(
    InputArray image,         // 输入图像(单通道8位灰度图像)
    OutputArray edges,         // 输出边缘图像
    double threshold1,        // 低阈值
    double threshold2,        // 高阈值
    int apertureSize = 3,      // Sobel算子核的大小,默认为3
    bool L2gradient = false    // 是否使用更精确的L2范数梯度计算,默认为false
);

双阈值怎么设定?

通常建议高阈值与低阈值的比例在2:1到3:1之间。
例如,如果设置高阈值为100,则低阈值可以设置为50或33。
根据图像特性:
可以根据图像的特性来调整阈值。如果图像中的边缘比较弱,可以适当降低阈值;如果图像中的边缘比较强,可以适当提高阈值。

参考代码:

int main() 
{  
    // 读取灰度图像
    cv::Mat image = cv::imread("1.jpg", cv::IMREAD_GRAYSCALE);

    // 检查图像是否成功读取
    if (image.empty()) {
        std::cerr << "Error: Could not read the image." << std::endl;
        return -1;
    }

    // 应用Canny边缘检测
    cv::Mat edges;
    double lowThreshold = 50;  // 低阈值
    double highThreshold = 150;  // 高阈值
    //高斯滤波去噪后检测图像边缘
    GaussianBlur(image, image, Size(3, 3), 0);
    cv::Canny(image, edges, lowThreshold, highThreshold);

    // 显示原始图像和Canny边缘检测的输出
    cv::imshow("Original Image", image);
    cv::imshow("Canny Edges", edges);
    // 等待用户按键
    cv::waitKey(0);

    return 0;
}

效果图如下:
左边是之间通过canny检测的边缘,右边是先通过高斯滤波去噪后再使用canny检测的边缘,可以明显的发现先去噪再检测边缘效果会更好。
在这里插入图片描述

参考文章:opencv基础44- Canny边缘检测详解-cv.Canny()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1292285.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

国外企业电子邮箱使用情况:推荐与优缺点分析

Zoho Mail是专门为国际邮箱设计的电子邮件服务&#xff0c;具有多语言支持、多域名支持、全球数据中心、安全隐私保护、大容量存储、邮件过滤和排序等优点。 一、多语言支持&#xff1a; Zoho Mail提供多种语言界面&#xff0c;包括英语、汉语、西班牙语、法语、德语等&#xf…

毕业设计全流程!

先看一眼时间线&#xff1a; 1

代码随想录算法训练营第三十七天|1049. 最后一块石头的重量 II ,494. 目标和,474.一和零

1049. 最后一块石头的重量 II - 力扣&#xff08;LeetCode&#xff09; 有一堆石头&#xff0c;用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分别为 x 和 y&am…

Java常见算法和lambda

查找算法 public class day11 {public static void main(String[] args) {//基本查找 / 顺序差宅//核心://从0索引开始挨个往后查找//需求:定义一个方法利用基本查找 查询某个元素是否存在//数据如下:{131,127,147,81,103,23,7,79}int[] arr{131,127,147,81,103,23,7,79};int…

全志H6-ARMLinux第1天:全志概述、刷机登陆、官方外设库、蜂鸣器、超声波测距

1. 全志H616课程概述&#xff08;456.01&#xff09; 1.1 为什么学 学习目标依然是Linux系统&#xff0c;平台是ARM架构 蜂巢快递柜&#xff0c;配送机器人&#xff0c;这些应用场景用 C51、STM32 单片机无法实现第三方介入库的局限性&#xff0c;比如刷脸支付和公交车收费设…

超级好用的IDEA插件推荐

IDEA是一款功能强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它可以帮助开发人员更加高效地编写、调试和部署软件应用程序。我们在编写完接口代码后需要进行接口调试等操作&#xff0c;一般需要打开额外的调试工具。 今天给大家介绍一款IDEA插件&#xff1a;Api…

Vulnhub项目:EMPIRE: BREAKOUT

一、靶机地址 靶机地址&#xff1a;Empire: Breakout ~ VulnHub 靶机介绍&#xff1a; 该靶机被定义为简单&#xff0c;但是如果没有找到&#xff0c;那就难度成中等了&#xff01; 二、渗透过程 老三样&#xff0c;发现目标&#xff0c;这里用 arp-scan 确定靶机 ip&#…

网络通信的流程,浏览器地址?

1.没有交换机的通信 在一个机房内,有两台电脑相互需要通信 假设现在有三台电脑: 随着电脑的增加,线的数量也在增加,因此显得很臃肿&#xff0c;次数交换机诞生&#xff0c;很好的解决了这一方面&#xff0c; 交换机不需要进行多条线的连接: 通过给设备分配,ip地址来实现局域网…

麻辣香锅病毒处置

1. 前言 今天早上正忙着&#xff0c;上级领导通知&#xff0c;说态势感知发现2023-12-05 18:40:50 主机X.X.93.21遭受攻击&#xff0c;攻击者为X.X.0.7后迅速开展检查&#xff0c;核实确认。 2. 原因分析 这里我从态势感知上看是IP&#xff1a;X.X.93.21去攻击IP&#xff1a;…

springboot 在自定义注解中注入bean,解决注入bean为null的问题

问题&#xff1a; 在我们开发过程中总会遇到比如在某些场合中需要使用service或者mapper等读取数据库&#xff0c;或者某些自动注入bean失效的情况 解决方法&#xff1a; 1.在构造方法中通过工具类获取需要的bean 工具类代码&#xff1a; import org.springframework.beans…

制药企业的设备健康管理系统为何要符合计算机化系统验证CSV?

在制药行业&#xff0c;设备健康管理对于确保生产过程的可靠性和质量至关重要。为了有效管理和监控设备的状态&#xff0c;制药企业常常采用设备健康管理系统。然而&#xff0c;这些系统的可靠性和合规性需要通过计算机化系统验证&#xff08;CSV&#xff09;进行验证。本文将探…

STM32——定时器Timer

定时器工作原理 软件定时 缺点&#xff1a;不精确、占用 CPU 资源 void Delay500ms() //11.0592MHz {unsigned char i, j, k;_nop_();i 4;j 129;k 119;do{do{while (--k);} while (--j);} while (--i); } 使用精准的时基&#xff0c;通过硬件的方式&#xff0c;实现定时功…

消费1000返1500元,买了4罐奶粉倒赚商家2000元?商家亏吗?

大家好&#xff0c;我是微三云胡佳东&#xff0c;一个深耕私域电商模式玩法的互联网人&#xff01;&#xff01; 在当前的全球经济环境下&#xff0c;消费增值的概念正逐渐受到广泛的关注。这一模式的崛起&#xff0c;不仅仅是一种商业模式的创新&#xff0c;更代表着我们对经…

(十五)Flask覆写wsgi_app函数实现自定义中间件

中间件 一、剖析&#xff1a; 在前面讲session部分提到过&#xff1a;请求一进来&#xff0c;Flask会自动调用应用程序对象【Flask(__name__)】的__call__方法&#xff0c;这个方法负责处理请求并返回响应&#xff08;其实如下图&#xff1a;其内部就是wsgi_app方法&#xff…

报表多源关联

报表多源关联 需求背景 在项目中会遇到多种数据展现在一起的报表。例如部分指标在关系型数据库中&#xff0c;部分指标通过restful接口获得到json&#xff0c;然后根据共同的维度关联一起&#xff0c;形成新的数据集。 解决方案 在硕迪报表中有两种方式实现该多源报表&…

UI自动化测试工具的定义及重要性

UI自动化测试工具在现代软件开发中起着不可或缺的作用。它们能够提高测试效率、减少人为错误、提供全面的测试覆盖&#xff0c;并支持持续集成。通过有效使用UI自动化测试工具&#xff0c;开发团队可以提高软件质量&#xff0c;提供更可靠的应用程序&#xff0c;满足用户的需求…

C语言内存函数讲解

目录 文章目录 内存函数针对的数据类型不确定可能是整型数据&#xff0c;字符数据&#xff0c;结构体数据...... memcpy的使用和模拟实现 memcpy的使用 memcpy打印字符数据 memcpy打印整型数据 memcpy的模拟实现 模拟实现的memcpy打印重叠情境 memmove的使用和模拟实现 memm…

vue 实现返回顶部功能-指定盒子滚动区域

vue 实现返回顶部功能-指定盒子滚动区域 html代码css代码返回顶部显示/隐藏返回标志 html代码 <a-icontype"vertical-align-top"class"top"name"back-top"click"backTop"v-if"btnFlag"/>css代码 .top {height: 35px;…

2023年天猫淘宝双12红包口令领取时间是从什么时候开始年终好价节活动?

2023年淘宝双12红包年终好价节活动时间 「领取时间」2023年淘宝年终好价节红包领取时间是从2023年12月8日00:00开始持续到12月12日23:59结束&#xff0c;在活动时间内每天都可以领取一次淘宝2023年终好价节红包&#xff0c;最高可得8888元淘宝超级红包&#xff1b; 「使用时间…

Python实现word自动化

个人网站 文章首发于公众号&#xff1a;小肖学数据分析 介绍 本教程将介绍如何使用Python的python-docx库来自动化Microsoft Word文档的创建和编辑工作&#xff0c;从而提高办公效率和准确性。 前提条件 基本的Python编程知识。 Python环境已安装python-docx库&#xff08;…