[足式机器人]Part4 南科大高等机器人控制课 Ch02 Rigid Body Configuration and Velocity

news2025/4/28 14:50:49

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang

南科大高等机器人控制课 Ch02 Rigid Body Configuration and Velocity

  • 1. Rigid Body Configuration
    • 1.1 Special Orthogonal Group
    • 1.2 Use of Rotation Matrix
    • 1.3 Homogeneous Transformation Matrix
  • 2. Rigid Body Velocity(Twist)
    • 2.1 Rigid Body Velocity: Spatial Velocity (Twist)
    • 2.2 Spatial Velocity Representation in a Reference Frame
    • 2.3 Change Reference Frame for Twist
  • 3. Geometric Aspect of Twist: Screw Motion
    • 3.1 Screw Motion : Definition
    • 3.2 From Screw Motion to Twist
    • 3.3 From Twist to Screw Motion
    • 3.4 Screw Reoersentation of a Twist
  • 4. Extra Note : Tutorial on Twist/spatial Velocity and Screw Axis
    • 4.1 What is Spatial Velocity and Twist
    • 4.2 What is Screw Motion and Axis?


1. Rigid Body Configuration

  • Free Vector

Free Vector: geometric quantity with length and direction

Given a reference frame, v ⃗ \vec{v} v can be move to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v ⃗ \vec{v} v can be represented by its coordinates v ⃗ \vec{v} v in the reference frame

v ⃗ \vec{v} v donated the physical quantity while v ⃗ A \vec{v}^A v A donate its coordinate wrt frame { A } \left\{ A \right\} {A}

Frame: coordinate system based on basis vectors—— { A : i ^ A , j ^ A , k ^ A } \left\{ A:\hat{i}^A,\hat{j}^A,\hat{k}^A \right\} {A:i^A,j^A,k^A}——3 coordinate vectors (unit length) i ^ A , j ^ A , k ^ A \hat{i}^A,\hat{j}^A,\hat{k}^A i^A,j^A,k^A and an origin

i ^ A , j ^ A , k ^ A \hat{i}^A,\hat{j}^A,\hat{k}^A i^A,j^A,k^A mutually orthogonal
i ^ A × j ^ A = k ^ A \hat{i}^A\times \hat{j}^A=\hat{k}^A i^A×j^A=k^A——right hand rule

  • Point

Point : p p p denotes a point in the physical space

{ A } \left\{ A \right\} {A} point p p p can be represented by a vector from frame origin to p p p
R ⃗ P A \vec{R}_{\mathrm{P}}^{A} R PA denotes the coordinate of a point p p p wrt frame { A } \left\{ A \right\} {A}

此处使用了笔者习惯的表达方式,所以并不会出现不同坐标系下表达的向量不可相加的情况(本质并非坐标参数的相加),这种表达方式很多,本质都是为了简化直观向量表达的同时不产生歧义

  • Cross Product

Cross Product or vector product of a ⃗ ∈ R 3 , b ⃗ ∈ R 3 \vec{a}\in \mathbb{R} ^3,\vec{b}\in \mathbb{R} ^3 a R3,b R3 is defined as
a ⃗ × b ⃗ = [ I ^ J ^ K ^ ] T [ a 2 b 3 − a 3 b 2 a 3 b 1 − a 1 b 3 a 1 b 2 − a 2 b 1 ] = [ I ^ J ^ K ^ ] T [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] [ b 1 b 2 b 3 ] = [ I ^ J ^ K ^ ] T a ⃗ ~ [ b 1 b 2 b 3 ] \vec{a}\times \vec{b}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} a_2b_3-a_3b_2\\ a_3b_1-a_1b_3\\ a_1b_2-a_2b_1\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 0& -a_3& a_2\\ a_3& 0& -a_1\\ -a_2& a_1& 0\\ \end{matrix} \right] \left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\tilde{\vec{a}}\left[ \begin{array}{c} b_1\\ b_2\\ b_3\\ \end{array} \right] a ×b = I^J^K^ T a2b3a3b2a3b1a1b3a1b2a2b1 = I^J^K^ T 0a3a2a30a1a2a10 b1b2b3 = I^J^K^ Ta ~ b1b2b3

a ⃗ ~ = − a ⃗ ~ T \tilde{\vec{a}}=-\tilde{\vec{a}}^{\mathrm{T}} a ~=a ~T (called skew stmmetric)
a ⃗ ~ b ⃗ ~ − b ⃗ ~ a ⃗ ~ = a ⃗ × b ⃗ ~ \tilde{\vec{a}}\tilde{\vec{b}}-\tilde{\vec{b}}\tilde{\vec{a}}=\widetilde{\vec{a}\times \vec{b}} a ~b ~b ~a ~=a ×b Jocabi’s Idenetity

  • Rotation Matrix

Rotation Matrix: specifies orientation of one frame relative to another

A valid rotation matrx [ Q B A ] \left[ Q_{\mathrm{B}}^{A} \right] [QBA] satisfies : [ Q B A ] [ Q B A ] T = E , det ⁡ ( [ Q B A ] ) = 1 \left[ Q_{\mathrm{B}}^{A} \right] \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}=E,\det \left( \left[ Q_{\mathrm{B}}^{A} \right] \right) =1 [QBA][QBA]T=E,det([QBA])=1

1.1 Special Orthogonal Group

Special Orthogonal Group : Space of Rotation Matrices in R n \mathbb{R} ^n Rn is defined as
S O ( n ) = { [ Q B A ] ∈ R n × n : [ Q B A ] [ Q B A ] T = E , det ⁡ ( [ Q B A ] ) = 1 } SO\left( n \right) =\left\{ \left[ Q_{\mathrm{B}}^{A} \right] \in \mathbb{R} ^{n\times n}:\left[ Q_{\mathrm{B}}^{A} \right] \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}=E,\det \left( \left[ Q_{\mathrm{B}}^{A} \right] \right) =1 \right\} SO(n)={[QBA]Rn×n:[QBA][QBA]T=E,det([QBA])=1}

S O ( n ) SO\left( n \right) SO(n) is a group. We are primarily interested in S O ( 3 ) SO\left( 3 \right) SO(3) and S O ( 2 ) SO\left( 2 \right) SO(2), rotation groups of R 3 \mathbb{R} ^3 R3 and R 2 \mathbb{R} ^2 R2 , respectively.

Group is a set G G G, together with an operation ∙ \bullet , satisfying the following group axioms/'æksɪəm/公理:

  • Closure: a ∈ G , b ∈ G ⇒ a ∙ b ∈ G a\in G,b\in G\Rightarrow a\bullet b\in G aG,bGabG
  • Assocaitivity: ( a ∙ b ) ∙ c = a ∙ ( b ∙ c ) , ∀ a , b , c ∈ G \left( a\bullet b \right) \bullet c=a\bullet \left( b\bullet c \right) ,\forall a,b,c\in G (ab)c=a(bc),a,b,cG
  • Identity element: ∃ e ∈ G \exists e\in G eG such that e ∙ a = a e\bullet a=a ea=a , for all a ∈ G a\in G aG
  • Inverse element: For each a ∈ G a\in G aG, there is a b ∈ G b\in G bG such that a ∙ b = b ∙ a = e a\bullet b=b\bullet a=e ab=ba=e, where e e e is the identity element

1.2 Use of Rotation Matrix

  • Representing an orientation —— from definition
    将原矢量进行旋转变换,得到该坐标系下新矢量的坐标投影参数:
    R ⃗ p ′ F = [ Q B A ] R ⃗ p F \vec{R}_{\mathrm{p}^{\prime}}^{F}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{p}}^{F} R pF=[QBA]R pF
  • Changing the reference frame
    对坐标系进行转换,基于坐标系 { B } \left\{ B \right\} {B}中的该矢量的坐标投影参数 R ⃗ p B \vec{R}_{\mathrm{p}}^{B} R pB,得到该矢量在坐标系 { A } \left\{ A \right\} {A}中的坐标投影参数 R ⃗ p A \vec{R}_{\mathrm{p}}^{A} R pA
    R ⃗ p A = [ Q B A ] R ⃗ p B \vec{R}_{\mathrm{p}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{p}}^{B} R pA=[QBA]R pB

[ i ⃗ B j ⃗ B k ⃗ B ] T [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ ( [ Q B A ] T [ i ⃗ A j ⃗ A k ⃗ A ] ) T [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ [ i ⃗ A j ⃗ A k ⃗ A ] T [ Q B A ] [ P 1 B P 2 B P 3 B ] = [ i ⃗ A j ⃗ A k ⃗ A ] T [ P 1 A P 2 A P 3 A ] ⇒ [ Q B A ] [ P 1 B P 2 B P 3 B ] = [ P 1 A P 2 A P 3 A ] = [ P ′ 1 B P ′ 2 B P ′ 3 B ] \left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ \Rightarrow \left( \left[ Q_{\mathrm{B}}^{A} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] \right) ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ \Rightarrow \left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ Q_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} \vec{i}^A\\ \vec{j}^A\\ \vec{k}^A\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] \\ \Rightarrow \left[ Q_{\mathrm{B}}^{A} \right] \left[ \begin{array}{c} P_{1}^{\mathrm{B}}\\ P_{2}^{\mathrm{B}}\\ P_{3}^{\mathrm{B}}\\ \end{array} \right] =\left[ \begin{array}{c} P_{1}^{A}\\ P_{2}^{A}\\ P_{3}^{A}\\ \end{array} \right] =\left[ \begin{array}{c} {P^{\prime}}_{1}^{\mathrm{B}}\\ {P^{\prime}}_{2}^{\mathrm{B}}\\ {P^{\prime}}_{3}^{\mathrm{B}}\\ \end{array} \right] i Bj Bk B T P1BP2BP3B = i Aj Ak A T P1AP2AP3A [QBA]T i Aj Ak A T P1BP2BP3B = i Aj Ak A T P1AP2AP3A i Aj Ak A T[QBA] P1BP2BP3B = i Aj Ak A T P1AP2AP3A [QBA] P1BP2BP3B = P1AP2AP3A = P1BP2BP3B

  • Rotating a vector or a frame (轴角变换)

Given two coordinate frames { A } \left\{ A \right\} {A} and { B } \left\{ B \right\} {B}, the configuration of B B B relative to A A A is determined by [ Q B A ] \left[ Q_{\mathrm{B}}^{A} \right] [QBA] and R ⃗ B A \vec{R}_{\mathrm{B}}^{A} R BA

For a (free) vector R ⃗ f r e e \vec{R}_{\mathrm{free}} R free, its coordinates R ⃗ f r e e A \vec{R}_{free}^{A} R freeA and R ⃗ f r e e B \vec{R}_{free}^{B} R freeB are related by : R ⃗ f r e e A = [ Q B A ] R ⃗ f r e e B \vec{R}_{free}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{free}}^{B} R freeA=[QBA]R freeB

For a point P P P, its coordinates R ⃗ P A \vec{R}_{\mathrm{P}}^{A} R PA and R ⃗ P B \vec{R}_{\mathrm{P}}^{B} R PB are related by: R ⃗ P A = [ Q B A ] R ⃗ P B + R ⃗ B A \vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A} R PA=[QBA]R PB+R BA(一个无聊的小陷阱)

1.3 Homogeneous Transformation Matrix

Linear relation: R ⃗ f r e e A = [ Q B A ] R ⃗ f r e e B \vec{R}_{\mathrm{free}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{free}}^{B} R freeA=[QBA]R freeB——configuration of { B } \left\{ B \right\} {B} relative to { A } \left\{ A \right\} {A}
Affine relation: R ⃗ P A = [ Q B A ] R ⃗ P B + R ⃗ B A \vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A} R PA=[QBA]R PB+R BA

Homogeneous Transformation Matrix: [ T B A ] \left[ T_{\mathrm{B}}^{A} \right] [TBA]
R ⃗ P A = [ Q B A ] R ⃗ P B + R ⃗ B A ⇒ [ R ⃗ P A 1 ] = [ [ Q B A ] R ⃗ B A 0 1 × 3 1 ] 4 × 4 [ R ⃗ P B 1 ] \vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A}\Rightarrow \left[ \begin{array}{c} \vec{R}_{\mathrm{P}}^{A}\\ 1\\ \end{array} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& \vec{R}_{\mathrm{B}}^{A}\\ 0_{1\times 3}& 1\\ \end{matrix} \right] _{4\times 4}\left[ \begin{array}{c} \vec{R}_{\mathrm{P}}^{B}\\ 1\\ \end{array} \right] R PA=[QBA]R PB+R BA[R PA1]=[[QBA]01×3R BA1]4×4[R PB1]
⇒ [ T B A ] = [ [ Q B A ] R ⃗ B A 0 1 ] \Rightarrow \left[ T_{\mathrm{B}}^{A} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& \vec{R}_{\mathrm{B}}^{A}\\ 0& 1\\ \end{matrix} \right] [TBA]=[[QBA]0R BA1]

Homogeneous coordinates: Given a point P ∈ R 3 P\in \mathbb{R} ^3 PR3, its homogeneous coordinates is given by [ R ⃗ P A ] = [ R ⃗ P A 1 ] ∈ R 4 \left[ \vec{R}_{\mathrm{P}}^{A} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}}^{A}\\ 1\\ \end{array} \right] \in \mathbb{R} ^4 [R PA]=[R PA1]R4

最终简化为:
[ R ⃗ P A ] = [ T B A ] [ R ⃗ P B ] \left[ \vec{R}_{\mathrm{P}}^{A} \right] =\left[ T_{\mathrm{B}}^{A} \right] \left[ \vec{R}_{\mathrm{P}}^{B} \right] [R PA]=[TBA][R PB]

对于向量 R ⃗ P 1 P 2 A \vec{R}_{\mathrm{P}_1\mathrm{P}_2}^{A} R P1P2A 而言,则有:
[ R ⃗ P 1 P 2 A ] = [ R ⃗ P 2 A − R ⃗ P 1 A ] = [ R ⃗ P 2 A 1 ] − [ R ⃗ P 1 A 1 ] = [ R ⃗ P 2 A − R ⃗ P 1 A 0 ] = [ R ⃗ P 1 P 2 A 0 ] \left[ \vec{R}_{\mathrm{P}_1\mathrm{P}_2}^{A} \right] =\left[ \vec{R}_{\mathrm{P}_2}^{A}-\vec{R}_{\mathrm{P}_1}^{A} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_2}^{A}\\ 1\\ \end{array} \right] -\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_1}^{A}\\ 1\\ \end{array} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_2}^{A}-\vec{R}_{\mathrm{P}_1}^{A}\\ 0\\ \end{array} \right] =\left[ \begin{array}{c} \vec{R}_{\mathrm{P}_1\mathrm{P}_2}^{A}\\ 0\\ \end{array} \right] [R P1P2A]=[R P2AR P1A]=[R P2A1][R P1A1]=[R P2AR P1A0]=[R P1P2A0]

  • Example of Homogeneous Transformation Matrix
    在这里插入图片描述

2. Rigid Body Velocity(Twist)

Consider a rigid body with angular velocity: ω ⃗ \vec{\omega} ω (this is a free vector)
Suppose the actual rotation axis passes through a point: P P P ; Let v ⃗ P \vec{v}_{\mathrm{P}} v P be the velocity of the point P P P

  • Question: A rigid body cibraubs infinitely many points with different velocities. How to parameterize/pə'ræmɪtə,raɪz/参数化 all of their velocities?
    1.Consider an aritrary body-fixed point Q Q Q (means that the point is rigidly attached to the body, and moves with the body), we have: v ⃗ Q = v ⃗ P + ω ⃗ × R ⃗ P Q \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{P}}+\vec{\omega}\times \vec{R}_{\mathrm{PQ}} v Q=v P+ω ×R PQ
    2.The velocity of an arbitrary body-fixed point depends only on ( ω ⃗ , v ⃗ P , R ⃗ P \vec{\omega},\vec{v}_{\mathrm{P}},\vec{R}_{\mathrm{P}} ω ,v P,R P) and the location of the point Q Q Q
  • Fact: The representation form is independent of the reference point P P P
  • Consider an arbitrary point S S S in space
    1. S S S may not be on the rotation axis
    2. S S S may be a stationary point in space(does not move)
    3.Let v ⃗ S \vec{v}_{\mathrm{S}} v S be the velocity of the body-fixed point(rigidly attached to the body ) currently coincides with S S S(may not be body frame)
    4.We still have: v ⃗ Q = v ⃗ P + ω ⃗ × R ⃗ P Q , v ⃗ S = v ⃗ P + ω ⃗ × R ⃗ P S ⇒ v ⃗ Q = v ⃗ S − ω ⃗ × R ⃗ P S + ω ⃗ × R ⃗ P Q = v ⃗ S + ω ⃗ × R ⃗ S Q \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{P}}+\vec{\omega}\times \vec{R}_{\mathrm{PQ}},\vec{v}_{\mathrm{S}}=\vec{v}_{\mathrm{P}}+\vec{\omega}\times \vec{R}_{\mathrm{PS}}\Rightarrow \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{S}}-\vec{\omega}\times \vec{R}_{\mathrm{PS}}+\vec{\omega}\times \vec{R}_{\mathrm{PQ}}=\vec{v}_{\mathrm{S}}+\vec{\omega}\times \vec{R}_{\mathrm{SQ}} v Q=v P+ω ×R PQ,v S=v P+ω ×R PSv Q=v Sω ×R PS+ω ×R PQ=v S+ω ×R SQ

The body can be regarded as translating with a linear velocity v ⃗ S \vec{v}_{\mathrm{S}} v S , while rotating with angular velocity ω ⃗ \vec{\omega} ω about an axis passing through S S S

2.1 Rigid Body Velocity: Spatial Velocity (Twist)

  • Spatial Velocity(Twist) : V S = ( ω ⃗ , v ⃗ S ) \mathcal{V} _S=\left( \vec{\omega},\vec{v}_{\mathrm{S}} \right) VS=(ω ,v S)
    ω ⃗ \vec{\omega} ω - angular velocity; v ⃗ S \vec{v}_{\mathrm{S}} v S - velocity of the body-fixed point currently coincides with S S S
    For any other body-fixed point Q Q Q, its velocity is v ⃗ Q = v ⃗ S + ω ⃗ × R ⃗ S Q \vec{v}_{\mathrm{Q}}=\vec{v}_{\mathrm{S}}+\vec{\omega}\times \vec{R}_{\mathrm{SQ}} v Q=v S+ω ×R SQ

  • Twist is a ‘physical’ quantity (just like linear or angular velocity): It can be represented in any chosen reference point S S S

  • A rigid body with V S = ( ω ⃗ , v ⃗ S ) \mathcal{V} _S=\left( \vec{\omega},\vec{v}_{\mathrm{S}} \right) VS=(ω ,v S) can be ‘thought of’ as translating at v ⃗ S \vec{v}_{\mathrm{S}} v S while rotating with angular velocity ω ⃗ \vec{\omega} ω about an axis passing through S S S : This is just one way to interpret the motion.

2.2 Spatial Velocity Representation in a Reference Frame

Given frame { O } \left\{ O \right\} {O} and a spatial velocity V ∈ R 6 \mathcal{V} \in \mathbb{R} ^6 VR6

Choose o o o (the origin of { O } \left\{ O \right\} {O}) as the reference point to represent the rigid body velocity—— V O = ( ω ⃗ O , v ⃗ O ) \mathcal{V} ^O=\left( \vec{\omega}^O,\vec{v}^O \right) VO=(ω O,v O) : Coordinates for the V \mathcal{V} V in { O } \left\{ O \right\} {O} , by dafault, we assume the origin of the frame is used as the reference point: V O = V O O \mathcal{V} ^O=\mathcal{V} _{\mathrm{O}}^{O} VO=VOO

Example of Twist ,1:
在这里插入图片描述

Example of Twist ,2:
在这里插入图片描述

2.3 Change Reference Frame for Twist

Given a twist V \mathcal{V} V , let V A \mathcal{V} ^A VA and V B \mathcal{V} ^B VB be their coordinates in frames { A } \left\{ A \right\} {A} and { B } \left\{ B \right\} {B} : V A = [ ω ⃗ A v ⃗ A ] , V B = [ ω ⃗ B v ⃗ B ] \mathcal{V} ^A=\left[ \begin{array}{c} \vec{\omega}^A\\ \vec{v}^A\\ \end{array} \right] ,\mathcal{V} ^B=\left[ \begin{array}{c} \vec{\omega}^B\\ \vec{v}^B\\ \end{array} \right] VA=[ω Av A],VB=[ω Bv B]

  • ω ⃗ A = [ Q B A ] ω ⃗ B \vec{\omega}^A=\left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B ω A=[QBA]ω B
  • v ⃗ A A = v ⃗ B A + ω ⃗ A × R ⃗ B A A = [ Q B A ] v ⃗ B B + R ⃗ B A × ( [ Q B A ] ω ⃗ B ) = [ Q B A ] v ⃗ B B + R ⃗ ~ B A [ Q B A ] ω ⃗ B \vec{v}_{\mathrm{A}}^{A}=\vec{v}_{\mathrm{B}}^{A}+\vec{\omega}^A\times \vec{R}_{\mathrm{BA}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{v}_{\mathrm{B}}^{B}+\vec{R}_{\mathrm{B}}^{A}\times \left( \left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B \right) =\left[ Q_{\mathrm{B}}^{A} \right] \vec{v}_{\mathrm{B}}^{B}+\tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right] \vec{\omega}^B v AA=v BA+ω A×R BAA=[QBA]v BB+R BA×([QBA]ω B)=[QBA]v BB+R ~BA[QBA]ω B

V A = [ ω ⃗ A v ⃗ A ] = [ [ Q B A ] 0 3 × 3 R ⃗ ~ B A [ Q B A ] [ Q B A ] ] 6 × 6 [ ω ⃗ B v ⃗ B ] = [ X B A ] V B \mathcal{V} ^A=\left[ \begin{array}{c} \vec{\omega}^A\\ \vec{v}^A\\ \end{array} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& 0_{3\times 3}\\ \tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right]& \left[ Q_{\mathrm{B}}^{A} \right]\\ \end{matrix} \right] _{6\times 6}\left[ \begin{array}{c} \vec{\omega}^B\\ \vec{v}^B\\ \end{array} \right] =\left[ X_{\mathrm{B}}^{A} \right] \mathcal{V} ^B VA=[ω Av A]=[[QBA]R ~BA[QBA]03×3[QBA]]6×6[ω Bv B]=[XBA]VB

If configuration V B \mathcal{V} ^B VB in V A \mathcal{V} ^A VA is [ T B A ] = ( [ Q B A ] , R ⃗ B A ) \left[ T_{\mathrm{B}}^{A} \right] =\left( \left[ Q_{\mathrm{B}}^{A} \right] ,\vec{R}_{\mathrm{B}}^{A} \right) [TBA]=([QBA],R BA) , then : [ X B A ] = [ A d T ] = [ [ Q B A ] 0 R ⃗ ~ B A [ Q B A ] [ Q B A ] ] \left[ X_{\mathrm{B}}^{A} \right] =\left[ Ad_{\mathrm{T}} \right] =\left[ \begin{matrix} \left[ Q_{\mathrm{B}}^{A} \right]& 0\\ \tilde{\vec{R}}_{\mathrm{B}}^{A}\left[ Q_{\mathrm{B}}^{A} \right]& \left[ Q_{\mathrm{B}}^{A} \right]\\ \end{matrix} \right] [XBA]=[AdT]=[[QBA]R ~BA[QBA]0[QBA]]——adjoint to T

3. Geometric Aspect of Twist: Screw Motion

v ⃗ = ∥ v ⃗ ∥ v ⃗ ^ , ω ⃗ = θ ˙ ω ⃗ ^ \vec{v}=\left\| \vec{v} \right\| \hat{\vec{v}},\vec{\omega}=\dot{\theta}\hat{\vec{\omega}} v =v v ^,ω =θ˙ω ^

3.1 Screw Motion : Definition

Screw Motion : Standard/ canonical/kə'nɒnɪk(ə)l/典型 motion for rigid body motion

Rotating about an axis while also translating along the axis
在这里插入图片描述
Represented by screw axis { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} and rotation speed θ ˙ \dot{\theta} θ˙ (derive the linear speed is h θ ˙ h\dot{\theta} hθ˙)

  • s ^ \hat{s} s^ : unit vector in the direction of the rotatin axis
  • R ⃗ q \vec{R}_q R q : any point on the rotation axis
  • h h h : screw pitch which defines the ratio of the linear velocity along with the screw axis to the angular velocity about the screw axis

Theorem(Chasles) : Every rigid body motion can be realized by a screw motion

3.2 From Screw Motion to Twist

Consider a rigid body under a screw motion with screw axis { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} and rotation speed θ ˙ \dot{\theta} θ˙
Fix a reference frame V A \mathcal{V} ^A VA with origin A A A
Find the Twist : V A = ( ω ⃗ A , v ⃗ A A ) = ( s ^ A θ ˙ , v ⃗ q A + ω ⃗ A × R ⃗ q A A ) = ( s ^ A θ ˙ , h θ ˙ + ( s ^ A θ ˙ ) × R ⃗ q A A ) = ( s ^ A θ ˙ , h θ ˙ + R ⃗ q A × ( s ^ A θ ˙ ) ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{A}}^{A} \right) =\left( \hat{s}^A\dot{\theta},\vec{v}_{\mathrm{q}}^{A}+\vec{\omega}^A\times \vec{R}_{\mathrm{qA}}^{A} \right) =\left( \hat{s}^A\dot{\theta},h\dot{\theta}+\left( \hat{s}^A\dot{\theta} \right) \times \vec{R}_{\mathrm{qA}}^{A} \right) =\left( \hat{s}^A\dot{\theta},h\dot{\theta}+\vec{R}_{\mathrm{q}}^{A}\times \left( \hat{s}^A\dot{\theta} \right) \right) VA=(ω A,v AA)=(s^Aθ˙,v qA+ω A×R qAA)=(s^Aθ˙,hθ˙+(s^Aθ˙)×R qAA)=(s^Aθ˙,hθ˙+R qA×(s^Aθ˙))

Result: given screw axis { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} with rotation speed θ ˙ \dot{\theta} θ˙ , the corresponding twist V A = ( ω ⃗ A , v ⃗ A A ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{A}}^{A} \right) VA=(ω A,v AA) is given by :
ω ⃗ A = s ^ A θ ˙ , v ⃗ A A = h θ ˙ + R ⃗ q A × ( s ^ A θ ˙ ) \vec{\omega}^A=\hat{s}^A\dot{\theta},\vec{v}_{\mathrm{A}}^{A}=h\dot{\theta}+\vec{R}_{\mathrm{q}}^{A}\times \left( \hat{s}^A\dot{\theta} \right) ω A=s^Aθ˙,v AA=hθ˙+R qA×(s^Aθ˙)
The result holds as long as all the vectors and the twist are repersented in the same reference frame

3.3 From Twist to Screw Motion

The converse is true as well: given any twist V A = ( ω ⃗ A , v ⃗ A A ) \mathcal{V} ^A=\left( \vec{\omega}^A,\vec{v}_{\mathrm{A}}^{A} \right) VA=(ω A,v AA) we can always find the corresponding screw motion { R ⃗ q , s ^ , h } \left\{ \vec{R}_q,\hat{s},h \right\} {R q,s^,h} and θ ˙ \dot{\theta} θ˙

  • If ω ⃗ = 0 \vec{\omega}=0 ω =0, then it is a pure translation( h = ∞ h=\infty h=)
    s ^ = v ⃗ ∥ v ⃗ ∥ , θ ˙ = ∥ v ⃗ ∥ , h = ∞ \hat{s}=\frac{\vec{v}}{\left\| \vec{v} \right\|},\dot{\theta}=\left\| \vec{v} \right\| ,h=\infty s^=v v ,θ˙=v ,h=, R ⃗ q \vec{R}_q R q can be arbitrary
  • If ω ⃗ ≠ 0 \vec{\omega}\ne 0 ω =0:
    s ^ = ω ⃗ ∥ ω ⃗ ∥ , θ ˙ = ∥ ω ⃗ ∥ , R ⃗ q = ω ⃗ × v ⃗ ∥ ω ⃗ ∥ 2 , h = ω ⃗ T v ⃗ ∥ ω ⃗ ∥ \hat{s}=\frac{\vec{\omega}}{\left\| \vec{\omega} \right\|},\dot{\theta}=\left\| \vec{\omega} \right\| ,\vec{R}_{\mathrm{q}}=\frac{\vec{\omega}\times \vec{v}}{\left\| \vec{\omega} \right\| ^2},h=\frac{\vec{\omega}^{\mathrm{T}}\vec{v}}{\left\| \vec{\omega} \right\|} s^=ω ω ,θ˙=ω ,R q=ω 2ω ×v ,h=ω ω Tv

You can pluf into the euqation above to very the result

Example: Screw Axin and Twist
在这里插入图片描述
在这里插入图片描述

3.4 Screw Reoersentation of a Twist

  • Recall : an angular velocity vector ω ⃗ \vec{\omega} ω can be viewed as θ ˙ ω ⃗ \dot{\theta}\vec{\omega} θ˙ω , where ω ⃗ \vec{\omega} ω is the unit ratation axis and θ ˙ \dot{\theta} θ˙ is the rate of rotation about that axis

Similarly, a twist (spatial velocity) V \mathcal{V} V can be interpreted in terms of a screw axis S ^ = { s ^ , h , R ⃗ q } \hat{\mathcal{S}}=\left\{ \hat{s},h,\vec{R}_q \right\} S^={s^,h,R q} and a velocity θ ˙ \dot{\theta} θ˙ about the screw axis

Consider a rigid body motion along a screw axis S ^ = { s ^ , h , R ⃗ q } \hat{\mathcal{S}}=\left\{ \hat{s},h,\vec{R}_q \right\} S^={s^,h,R q} with speed θ ˙ \dot{\theta} θ˙. With slight abuse of notation, we will often write its twist as
V = θ ˙ S ^ \mathcal{V} =\dot{\theta}\hat{\mathcal{S}} V=θ˙S^

In this notation, we think of S ^ \hat{\mathcal{S}} S^ as the twist associated with a unit speed motion along the screw axis { s ^ , h , R ⃗ q } \left\{ \hat{s},h,\vec{R}_q \right\} {s^,h,R q}

4. Extra Note : Tutorial on Twist/spatial Velocity and Screw Axis

4.1 What is Spatial Velocity and Twist

  • Twist/spatial velocity is the velocity of the whole rigid body, not velocity of a particular point
  • Rigid body has inifinitely many points with different velocites
  • All these velocites v ⃗ P i \vec{v}_{\mathrm{P}_{\mathrm{i}}} v Pi are not independent, depend on the vector of its location and other parameters(common for the entire body), and can be experssed by same set of parameters(twist/spatial velocity is one such parameters)
  1. Assume P 0 P_0 P0 is on the rotation axis/body-fixed, then any other body-fixed
    pt. v ⃗ P i = v ⃗ P 0 + ω ⃗ × R ⃗ P 0 P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{P}_0}+\vec{\omega}\times \vec{R}_{\mathrm{P}_0\mathrm{P}_{\mathrm{i}}} v Pi=v P0+ω ×R P0Pi
  2. What if we use v ⃗ q \vec{v}_{\mathrm{q}} v q as the reference velocity, for arbitrary body-fixed
    pt. q q q (may not be on rotation axis), we still have the same expression : v ⃗ P i = v ⃗ q + ω ⃗ × R ⃗ q P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{q}}+\vec{\omega}\times \vec{R}_{\mathrm{qP}_{\mathrm{i}}} v Pi=v q+ω ×R qPi
    ——use P 0 P_0 P0 as intermediate variable , q q q: body-fixed by above—— v ⃗ q = v ⃗ P 0 + ω ⃗ × R ⃗ P 0 P i = v ⃗ P i − ω ⃗ × R ⃗ q P i + ω ⃗ × R ⃗ P 0 P i \vec{v}_{\mathrm{q}}=\vec{v}_{P_0}+\vec{\omega}\times \vec{R}_{P_0\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{P}_{\mathrm{i}}}-\vec{\omega}\times \vec{R}_{\mathrm{qP}_{\mathrm{i}}}+\vec{\omega}\times \vec{R}_{P_0\mathrm{P}_{\mathrm{i}}} v q=v P0+ω ×R P0Pi=v Piω ×R qPi+ω ×R P0Pi
  3. Now let;s consider a frame { A } \left\{ A \right\} {A} with origin A A A
    3.1 Assume { A } \left\{ A \right\} {A} body fixed, moves with the body (in this case , let point A A A is point q q q) v ⃗ P i = v ⃗ A + ω ⃗ × R ⃗ A P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{A}}+\vec{\omega}\times \vec{R}_{\mathrm{AP}_{\mathrm{i}}} v Pi=v A+ω ×R APi in { A } \left\{ A \right\} {A} system : v ⃗ P i A = v ⃗ A A + ω ⃗ A × R ⃗ A P i A {\vec{v}_{\mathrm{P}_{\mathrm{i}}}}^A={\vec{v}_{\mathrm{A}}}^A+\vec{\omega}^A\times {\vec{R}_{\mathrm{AP}_{\mathrm{i}}}}^A v PiA=v AA+ω A×R APiA
    3.2 Assume { A } \left\{ A \right\} {A} NOT body-fixed ( { A } \left\{ A \right\} {A} does not move / moves in other way) , let q q q body fixes point such that R ⃗ q = R ⃗ A \vec{R}_{\mathrm{q}}=\vec{R}_{\mathrm{A}} R q=R A , if we define v ⃗ A \vec{v}_{\mathrm{A}} v A as the velocity of the body-fixed point currently coincides wth A A A : v ⃗ P i = v ⃗ q ( t ) + ω ⃗ × R ⃗ q ( t ) P i = v ⃗ A + ω ⃗ × R ⃗ A P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{q}\left( t \right)}+\vec{\omega}\times \vec{R}_{\mathrm{q}\left( t \right) \mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{A}}+\vec{\omega}\times \vec{R}_{\mathrm{AP}_{\mathrm{i}}} v Pi=v q(t)+ω ×R q(t)Pi=v A+ω ×R APi

summary : Given twist V = ( ω ⃗ , v ⃗ A ) \mathcal{V} =\left( \vec{\omega}^{},\vec{v}_{\mathrm{A}}^{} \right) V=(ω ,v A) , v ⃗ A \vec{v}_{\mathrm{A}}^{} v A velocity of body-fixed point currenting cioncides with A A A (reference poiny)

  • For any body-fixed P i P_{\mathrm{i}} Pi: v ⃗ P i = v ⃗ A + ω ⃗ × R ⃗ A P i \vec{v}_{\mathrm{P}_{\mathrm{i}}}=\vec{v}_{\mathrm{A}}+\vec{\omega}\times \vec{R}_{\mathrm{AP}_{\mathrm{i}}} v Pi=v A+ω ×R APi if A A A is origin of frame { A } \left\{ A \right\} {A} : v ⃗ P i A = v ⃗ A A + ω ⃗ A × R ⃗ A P i A {\vec{v}_{\mathrm{P}_{\mathrm{i}}}}^A={\vec{v}_{\mathrm{A}}}^A+\vec{\omega}^A\times {\vec{R}_{\mathrm{AP}_{\mathrm{i}}}}^A v PiA=v AA+ω A×R APiA
  • We can think the body is translating at velocity v ⃗ A \vec{v}_{\mathrm{A}} v A , while rotating at velocity ω ⃗ \vec{\omega} ω about axis passing through A A A

在这里插入图片描述
在这里插入图片描述

4.2 What is Screw Motion and Axis?

在这里插入图片描述
Screw motion : combined angular and linear motion

  • motion driven by rotation
  • parameters : { s ^ , h , R ⃗ q } \left\{ \hat{s},h,\vec{R}_q \right\} {s^,h,R q} and θ ˙ \dot{\theta} θ˙: ( s ^ , R ⃗ q ) \left( \hat{s},\vec{R}_q \right) (s^,R q) determeines the rotation axis; h h h linear speed / angular speed (due to thread on the screw - rotation induces linear motion)( h = 0 h=0 h=0-pure rotation, h = ∞ h=\infty h=-pure translation)

Over all { s ^ , h , R ⃗ q } \left\{ \hat{s},h,\vec{R}_q \right\} {s^,h,R q} screw axis(rotation axis + pitch); θ ˙ \dot{\theta} θ˙ how fast screw rotates

  1. screw motion is a special rigid-body motion, so its has a twist
    pitch a frame { A } \left\{ A \right\} {A} : ( s ^ , h , R ⃗ q ) + θ ˙ ⇒ [ ω ⃗ A v ⃗ A A ] , ω ⃗ A = θ ˙ s ^ , v ⃗ A A = ( h θ ˙ ) s ^ − ω ⃗ A × R ⃗ q \left( \hat{s},h,\vec{R}_q \right) +\dot{\theta}\Rightarrow \left[ \begin{array}{c} \vec{\omega}^A\\ \vec{v}_{\mathrm{A}}^{A}\\ \end{array} \right] , \vec{\omega}^A=\dot{\theta}\hat{s},\vec{v}_{\mathrm{A}}^{A}=\left( h\dot{\theta} \right) \hat{s}-\vec{\omega}^A\times \vec{R}_q (s^,h,R q)+θ˙[ω Av AA],ω A=θ˙s^,v AA=(hθ˙)s^ω A×R q use q q q sa the reference
  2. Ant rigid-body motion can be viewed as screw motion. Given any twist V \mathcal{V} V , we can always find ( s ^ , h , R ⃗ q , θ ˙ ) \left( \hat{s},h,\vec{R}_q,\dot{\theta} \right) (s^,h,R q,θ˙)
  3. We know V = S c r e w T o T w i s t ( s ^ , h , R ⃗ q , 1 ) θ ˙ = θ ˙ S \mathcal{V} =ScrewToTwist\left( \hat{s},h,\vec{R}_q,1 \right) \dot{\theta}=\dot{\theta}\mathcal{S} V=ScrewToTwist(s^,h,R q,1)θ˙=θ˙S while S \mathcal{S} S the twist corresponds to screw motion ( s ^ , h , R ⃗ q ) , θ ˙ = 1 \left( \hat{s},h,\vec{R}_q \right) ,\dot{\theta}=1 (s^,h,R q),θ˙=1
    eg. ω ⃗ = θ ˙ ω ^ \vec{\omega}=\dot{\theta}\hat{\omega} ω =θ˙ω^ , ω ^ \hat{\omega} ω^ : rotation axis or angular velocity when rotates about ω ^ \hat{\omega} ω^ at θ ˙ = 1 \dot{\theta}=1 θ˙=1

Summarize : Given any rigid-body motion V = [ ω ⃗ v ⃗ A ] \mathcal{V} =\left[ \begin{array}{c} \vec{\omega}\\ \vec{v}_{\mathrm{A}}^{}\\ \end{array} \right] V=[ω v A] , with angular direction ω ^ \hat{\omega} ω^ linear motion direction v ^ \hat{v} v^ , knows screw axis direction S ^ \hat{\mathcal{S}} S^—— V = θ ˙ S ^ \mathcal{V} =\dot{\theta}\hat{\mathcal{S}} V=θ˙S^

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1291543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

观海微电子---触控显示模组一体化效果方案

随着车载电子后视镜及智能魔镜的普及类似镜面一体化要求的产品越来越多,行业熟知的木纹、一体黑、镜面显示都属于触控显示一体化效果。 一体化效果是指显示模组灭屏状态下玻璃盖板显示区域与非显示区域无明显的色差可见的效果,显示模组亮屏后显示仍可见&…

MATLAB机器人对偏导数、雅克比矩阵、行列式的分析与实践

偏导数、雅克比矩阵、行列式都是非常重要的知识点,为了让大家更容易看懂,尽量使用画图来演示。 1、偏导数Partial derivative 对于导数我们已经很清楚了,某点求导就是某点的斜率,也就是这点的变化率。那么偏导数是什么&#xff…

thinkphp todo

来由: 数据库的这个字段我想返回成: 新奇的写法如下: 逻辑层的代码: public function goodsDetail($goodId){$detail $this->good->where(id, $goodId)->hidden([type_params,user_id])->find();if (!$detail) {ret…

idea新建spring boot starter

什么是spring boot starter Spring Boot Starter 是一种 Maven 或 Gradle 依赖,它能够轻松地将相关库和框架集成到 Spring Boot 应用程序中。Starter 是一种对常见依赖项和设置的易于复用的封装,它们通常被开发人员用于创建可插拔的 Spring Boot 应用程序…

Java UDP 多人聊天室简易版

服务端 import java.io.*; import java.net.*; import java.util.ArrayList; public class Server{public static ServerSocket server_socket;public static ArrayList<Socket> socketListnew ArrayList<Socket>(); public static void main(String []args){try{…

景联文科技:高质量垂直领域数据集助力AI技术突破

随着人工智能技术的飞速发展&#xff0c;垂直领域数据集在提升模型性能、解决领域问题、推动创新应用以及提升竞争力等方面的重要性日益凸显。 提高模型性能&#xff1a;垂直领域数据集专注于特定任务或领域&#xff0c;使用这些数据集进行训练可以让模型更好地理解和解决特定领…

安防音频接口选型的高性能国产芯片分析

在人工智能兴起之后&#xff0c;安防市场就成为了其全球最大的市场&#xff0c;也是成功落地的最主要场景之一。对于安防应用而言&#xff0c;智慧摄像头、智慧交通、智慧城市等概念的不断涌现&#xff0c;对于芯片产业催生出海量需求。今天&#xff0c;我将为大家梳理GLOBALCH…

得帆云助力容百科技构建CRM系统,实现LTC全流程管理

宁波容百新能源科技股份有限公司 宁波容百新能源科技股份有限公司&#xff08;以下简称“容百科技”&#xff09;于2014年9月建立&#xff0c;是高科技新能源材料行业的跨国型集团公司。专业从事锂电池正极材料的研发、生产和销售&#xff0c;于2019年登陆上交所科创板&#x…

CV计算机视觉每日开源代码Paper with code速览-2023.12.1

点击CV计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【基础网络架构&#xff1a;Transformer】TransNeXt: Robust Foveal Visual Perception for Vision Transformers 论文地址&#xff1a;http…

Java聊天

一对一聊天 服务端 package 一对一用户;import java.awt.BorderLayout; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.…

【问题思考】泰勒公式证明题如何选展开点?【对称美】

我的证明题水平很烂&#xff0c;这个纯属让自己有一个初步的理解&#xff0c;恳请指正&#xff01; 问题 我们可以看到这里有两种展开方式&#xff08;注意&#xff1a;x0叫展开点&#xff09;&#xff0c;分别是正确的做法&#xff0c;在x0展开&#xff0c;然后将0和a代入fx中…

【JavaEE】生产者消费者模式

作者主页&#xff1a;paper jie_博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文于《JavaEE》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精力)打造&…

【开源】基于JAVA的天沐瑜伽馆管理系统

项目编号&#xff1a; S 039 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S039&#xff0c;文末获取源码。} 项目编号&#xff1a;S039&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 瑜伽课程模块2.3 课…

线程池基础参数和执行流程

线程池核心参数 1.corePoolSize:线程池中核心线程的个数。 2.maximumPoolSize:线程池中线程的总数。&#xff08;线程总数核心线程数 救急线程数&#xff09; 3. keepAliveTime:救急线程的存活时间。&#xff08;救急线程空闲时的存活时间。&#xff09; 4.unit:存活时间的…

numpy数据读取保存及速度测试

目录 数据保存及读取 速度比对测试 数据保存及读取 代码示例&#xff1a; # 导入必要的库 import numpy as np # 生成测试数据 arr_disk np.arange(8) # 打印生成能的数据 print(arr_disk) # numpy保存数据到本地 np.save("arr_disk", arr_disk) # 加载本地数据…

gpt3、gpt2与gpt1区别

参考&#xff1a;深度学习&#xff1a;GPT1、GPT2、GPT-3_HanZee的博客-CSDN博客 Zero-shot Learning / One-shot Learning-CSDN博客 Zero-shot&#xff08;零次学习&#xff09;简介-CSDN博客 GPT-2 模型由多层单向transformer的解码器部分构成&#xff0c;本质上是自回归模型…

软件系统应用开发安全指南

2.1.应用系统架构安全设计要求 2.2.应用系统软件功能安全设计要求 2.3.应用系统存储安全设计要求 2.4.应用系统通讯安全设计要求 2.5.应用系统数据库安全设计要求 2.6.应用系统数据安全设计要求 全资料获取进主页。

C、C++、C#的区别概述

C、C、C#的区别概述 https://link.zhihu.com/?targethttps%3A//csharp-station.com/understanding-the-differences-between-c-c-and-c/文章翻译源于此链接 01、C语言 ​ Dennis Ritchie在1972年创造了C语言并在1978年公布。Ritchie设计C的初衷是用于开发新版本的Unix。在那之…

关于DWC OTG2.0中PFC的理解

在DWC OTG2.0 Controller手册中&#xff0c;有一章节专门介绍了PFC&#xff0c;Packet FIFO Controller。其内部分为共享FIFO&#xff08;shared FIFO&#xff09;以及专用FIFO&#xff08;Dedicated FIFO&#xff09;&#xff0c;并针对dev和host两种模式&#xff0c;并且还要…

IT行业软件数据文件传输安全与高效是如何保障的?

在当今迅速发展的科技世界中&#xff0c;云计算、大数据、移动互联网等信息技术正迎来蓬勃发展&#xff0c;IT行业正置身于一个全新的世界。数据不仅是最重要的资产&#xff0c;也是企业竞争力的核心所在。然而&#xff0c;如何缩短信息共享时间、高速流转数据、跨部门/跨区域协…