gpt3、gpt2与gpt1区别

news2025/1/15 17:43:53

 参考:深度学习:GPT1、GPT2、GPT-3_HanZee的博客-CSDN博客

Zero-shot Learning / One-shot Learning-CSDN博客

 Zero-shot(零次学习)简介-CSDN博客

 

GPT-2 模型由多层单向transformer的解码器部分构成,本质上是自回归模型,自回归的意思是指,每次产生新单词后,将新单词加到原输入句后面,作为新的输入句

gpt2与gpt1区别:

1.模型架构上变得更大,参数量达到了1.5B,数据集改为百万级别的WebText,,Bert当时最大的参数数量为0.34B,但是作者发现模型架构与数据集都扩大的情况下,与同时期的Bert的优势并不大。

2.gpt2 pre-training方法与gpt1一致,但在做下游任务时,不再进行微调,只进行简单的Zero-Shot,就能与同时期微调后的模型性能相差不大。

Zero-Shot(零次学习),成品模型对于训练集中没有出现过的类别,能自动创造出相应的映射: XX -> YY。利用训练集数据训练模型,使得模型能够对测试集的对象进行分类,但是训练集类别和测试集类别之间没有交集;期间需要借助类别的描述,来建立训练集和测试集之间的联系,从而使得模型有效。

Zero-Shot表现在GPT2中就是在训练样本中加入了下游任务的相关描述(从而在测试集上给出一个没在pre-training时训练的任务例如句子分类,gpt2也能执行?):

3.在模型结构上,调整了每个block Layer Normalization的位置

 gpt3与gpt2区别:

GPT3 可以理解为 GPT2 的升级版,使用了 45TB 的训练数据,拥有 175B 的参数量

GPT3 主要提出了两个概念:

情景(in-context)学习:就是对模型进行引导,教会它应当输出什么内容,比如翻译任务可以采用输入:请把以下英文翻译为中文:Today is a good day。这样模型就能够基于这一场景做出回答了,其实跟 GPT2 中不同任务的 token 有异曲同工之妙,只是表达更加完善、更加丰富了。

Zero-shot, one-shot and few-shot:GPT3 打出的口号就是“告别微调的 GPT3”,它可以通过不使用一条样例的 Zero-shot、仅使用一条样例的 One-shot 和使用少量样例的 Few-shot 来完成推理任务。下面是对比微调模型和 GPT3 三种不同的样本推理形式图。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1291521.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软件系统应用开发安全指南

2.1.应用系统架构安全设计要求 2.2.应用系统软件功能安全设计要求 2.3.应用系统存储安全设计要求 2.4.应用系统通讯安全设计要求 2.5.应用系统数据库安全设计要求 2.6.应用系统数据安全设计要求 全资料获取进主页。

C、C++、C#的区别概述

C、C、C#的区别概述 https://link.zhihu.com/?targethttps%3A//csharp-station.com/understanding-the-differences-between-c-c-and-c/文章翻译源于此链接 01、C语言 ​ Dennis Ritchie在1972年创造了C语言并在1978年公布。Ritchie设计C的初衷是用于开发新版本的Unix。在那之…

关于DWC OTG2.0中PFC的理解

在DWC OTG2.0 Controller手册中,有一章节专门介绍了PFC,Packet FIFO Controller。其内部分为共享FIFO(shared FIFO)以及专用FIFO(Dedicated FIFO),并针对dev和host两种模式,并且还要…

IT行业软件数据文件传输安全与高效是如何保障的?

在当今迅速发展的科技世界中,云计算、大数据、移动互联网等信息技术正迎来蓬勃发展,IT行业正置身于一个全新的世界。数据不仅是最重要的资产,也是企业竞争力的核心所在。然而,如何缩短信息共享时间、高速流转数据、跨部门/跨区域协…

智能优化算法应用:基于鹰栖息算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于鹰栖息算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于鹰栖息算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鹰栖息算法4.实验参数设定5.算法结果6.参考文献7.…

Linux--文件权限与shell外壳的理解

目录 一.Linux的用户与用户切换,提权 二.对文件权限的理解 1.文件权限角色的权限文件属性 2.Linux中的三种角色 3.为什么会存在所属组这个角色 4.文件属性的意义 4.1.第一个字母的意义 4.2 第2——第10个字母的意义 4.3修改文件权限的方法 三.目录权限 四…

记录 | linux手动清理 buff/cache

linux下手动清理 buff/cache 切换到 root 权限 # 这个drop_caches文件可以设置的值分别为1、2、3 echo 1 > /proc/sys/vm/drop_caches # 表示清除pagecache echo 2 > /proc/sys/vm/drop_caches # 表示清除回收slab分配器中的对象(包括目录项缓存和inode缓…

idea报错——Access denied for user ‘root‘@‘localhost‘ (using password: YES)

项目场景: 使用idea启动SpringBoot项目报错,可以根据提示看到是数据库的原因,显示使用了密码,具体报错信息如下: 解决方案: 第一步:先去配置文件里面查看连接MySQL的url是否正确,如果…

代码随想录算法训练营第四十二天 _ 动态规划_01背包问题、416.分割等和子集。

学习目标: 动态规划五部曲: ① 确定dp[i]的含义 ② 求递推公式 ③ dp数组如何初始化 ④ 确定遍历顺序 ⑤ 打印递归数组 ---- 调试 引用自代码随想录! 60天训练营打卡计划! 学习内容: 二维数组处理01背包问题 听起来…

Node.js快速搭建简单的HTTP服务器并发布公网远程访问

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…

基于ssm校园美食交流系统论文

目 录 摘 要 1 前 言 3 第1章 概述 4 1.1 研究背景 4 1.2 研究目的 4 1.3 研究内容 4 第二章 开发技术介绍 5 2.1Java技术 6 2.2 Mysql数据库 6 2.3 B/S结构 7 2.4 SSM框架 8 第三章 系统分析 9 3.1 可行性分析 9 3.1.1 技术可行性 9 3.1.2 经济可行性 10 3.1.3 操作可行性 10…

CentOS 7.9 安装 k8s(详细教程)

文章目录 安装步骤安装前准备事项安装docker准备环境安装kubelet、kubeadm、kubectl初始化master节点安装网络插件calicowork 加入集群 k8s集群测试 安装步骤 安装前准备事项 一台或多台机器,操作系统 CentOS7.x-86_x64硬件配置:2GB或更多RAM&#xff0…

order排序方式研究

请直接看原文: 链接:https://juejin.cn/post/7258182427306197051 --------------------------------------------------------------------------------------------------------------------------------- 一.前言 在MySQL世界中,排序是一个常见而重…

了解linux网络时间服务器

本章主要介绍网络时间服务器。 使用chrony配置时间服务器 配置chrony客户端向服务器同步时间 20.1 时间同步的必要性 些服务对时间要求非常严格,例如,图20-1所示的由三台服务器搭建的ceph集群。 这三台服务器的时间必须保持一致,如果不一致…

10 单词接龙

题目描述 单词接龙的规则是: 可用于接龙的单词首字母必须要前一个单词的尾字母相同; 当存在多个首字母相同的单词时,取长度最长的单词,如果长度也相等,则取字典序最小的单词;已经参与接龙的单词不能重复使用。 现给定一组全部由小写字母组成…

【开发技能】-解决visio交叉线(跨线)交叉点弯曲问题

问题 平时工作中使用visio作图时,经常会遇到交叉线在相交时会形成一个弯曲弓形,这十分影响视图效果。可以采用下面的方法消除弓形。 方法 第一步:菜单栏--设计---连接线 第二步:选中这条交叉线---点击显示跨线 最终问题得到解决…

C#图像处理OpenCV开发指南(CVStar,09)——边缘识别之Scharr算法的实例代码

1 边缘识别之Scharr算法 算法文章很多,不再论述。 1.1 函数原型 void Cv2.Scharr(src,dst,ddepth,dx,dy,scale,delta,borderType) 1.2 参数说明 src 代表原始图像。dst 代表目标图像。ddepth 代表输出图像的深度。CV_16Sdx 代表x方向上的求导阶数…

23款奔驰E350eL升级小柏林音响 13个扬声器 590w

小柏林之声音响是13个喇叭1个功放,功率是590W,对应普通音响来说,已经是上等了。像著名的哈曼卡顿音响,还是丹拿音响,或者是BOSE音响,论地位,论音质柏林之声也是名列前茅。 升级小柏林音响&#…

java多人聊天

服务端 package 多人聊天;import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintStream; import java.net.ServerSocket; import java.net.Socket; import java.util.ArrayList;…

qt 5.15.2 主窗体菜单工具栏树控件功能

qt 5.15.2 主窗体菜单工具栏树控件功能 显示主窗体效果&#xff1a; mainwindow.h文件内容&#xff1a; #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QFileDialog> #include <QString> #include <QMessageBox>#inc…