代码随想录算法训练营第四十二天 _ 动态规划_01背包问题、416.分割等和子集。

news2024/11/27 21:02:11

学习目标:

动态规划五部曲:
① 确定dp[i]的含义
② 求递推公式
③ dp数组如何初始化
④ 确定遍历顺序
⑤ 打印递归数组 ---- 调试
引用自代码随想录!

60天训练营打卡计划!

学习内容:

二维数组处理01背包问题

  • 听起来思路很简单,但其实一点也不好实现。
  • 动态规划五步曲:
    ① 确定dp[i][j]的含义 : 任取[0, i]的物品后放进容量为j的背包 所能放的 最大价值
    ② 求递推公式 : dp[i][j] = max(dp[i-1][j] , dp[i-1][ j - weight[i] ] + value[i])
    Ⅰ 不放物品 i : dp[i-1][j]
    Ⅱ 放物品 i : dp[i-1][j - weight[i]] + value[i]
    ③ dp数组如何初始化 : 按下表的第一行和第一列赋值,其中箭头都是继承来的值,画圈的表示自己取得了最大值。请添加图片描述
    ④ 确定遍历顺序 : 先物品后背包(行) / 先背包后物品(列)
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        //m,n分别代表物品种类和背包容量
        int itemSize = 0,bagSize = 0;
        Scanner sc = new Scanner(System.in);
        //获取itemSize和bagSize的值
        itemSize = sc.nextInt();
        bagSize = sc.nextInt();
        //初始化对应的重量数组和价值数组
        int[] weight = new int[itemSize];
        int[] value = new int[itemSize];
        //这两个都是物品的属性,大小只和物品数量有关
        for(int i = 0;i < itemSize;i++){
            weight[i] = sc.nextInt();
        }
        for (int i = 0;i < itemSize;i++){
            value[i] = sc.nextInt();
        }
        
        // int[] weight = {1,3,4};
        // int[] value = {15,20,30};
        // int bagSize = 4;
        testWeightBagProblem(weight,value,bagSize);
    }

    /**
     * 动态规划获得结果
     * @param weight  物品的重量
     * @param value   物品的价值
     * @param bagSize 背包的容量
     */
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){

        int itemSize = weight.length;
        // dp数组的含义是:在[0,i]件物品中选择是否放入背包 的 最大价值
        int[][] dp = new int[itemSize][bagSize+1];
        
        // 初始化dp数组,默认都为0.
        // 只放一件物品时的初始化
        for(int j = weight[0]; j < bagSize+1; j++){
            dp[0][j] = value[0];
        }
        
        // 正常的为dp数组赋值,依赖左上位置的其他的dp值
        for(int i = 1; i < itemSize; i++){
            // j是背包容量
            for(int j = 1; j < bagSize+1; j++){
                // 如果容量不够放入新的物品,则从上一行继承
                if(j < weight[i])   dp[i][j] = dp[i-1][j];
                // 如果容量可以放入新的物品,则从上一行的左侧继承
                else
                    dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]);
            }
        }
        System.out.println(dp[itemSize-1][bagSize]);
        
        // 打印dp数组
        // for (int i = 0; i < goods; i++) {
        //     for (int j = 0; j <= bagSize; j++) {
        //         System.out.print(dp[i][j] + "\t");
        //     }
        //     System.out.println("\n");
        // }
    }
}

一维数组处理01背包问题

  • 动态规划五步曲:
    ① 确定dp[j]的含义 : 任取物品放进容量为j的背包 所能放的 最大价值
    ② 求递推公式 : dp[j] = max(dp[j] , dp[j - weight[i]] + value[i])
    Ⅰ 不放物品 i : dp[j]
    Ⅱ 放物品 i : dp[j - weight[i]] + value[i]
    ③ dp数组如何初始化 : 初始值全部附0,长度为容量的长度加1(j+1)
    ④ 确定遍历顺序 : 必须先物品后背包(行),且便利背包大小时,必须使用倒序的顺序遍历。(为了防止一个物品被使用多次,倒叙遍历时相同的物品仅能被取用一次)

请添加图片描述

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        //m,n分别代表物品种类和背包容量
        int itemSize = 0,bagSize = 0;
        Scanner sc = new Scanner(System.in);
        //获取itemSize和bagSize的值
        itemSize = sc.nextInt();
        bagSize = sc.nextInt();
        //初始化对应的重量数组和价值数组
        int[] weight = new int[itemSize];
        int[] value = new int[itemSize];
        //这两个都是物品的属性,大小只和物品数量有关
        for(int i = 0;i < itemSize;i++){
            weight[i] = sc.nextInt();
        }
        for (int i = 0;i < itemSize;i++){
            value[i] = sc.nextInt();
        }
        
        // int[] weight = {1,3,4};
        // int[] value = {15,20,30};
        // int bagSize = 4;
        testWeightBagProblem(weight,value,bagSize);
    }

    /**
     * 动态规划获得结果
     * @param weight  物品的重量
     * @param value   物品的价值
     * @param bagSize 背包的容量
     */
    public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){

        // 创建dp一维数组
        int goods = weight.length;  // 获取物品的数量
        int[] dp = new int[bagSize + 1];

        // 初始化dp数组
        // 创建数组后,其中默认的值就是0
        
        // 填充dp数组
        for (int i = 0; i < goods; i++) {
            // 必须使用倒叙遍历背包大小
            for (int j = bagSize; j > 0; j--) {
                // 防止越界错误
                if (j < weight[i]) {
                    dp[j] = dp[j];
                } else {
                    dp[j] = Math.max(dp[j] , dp[j-weight[i]] + value[i]);
                }
            }
        }
        
        System.out.print(dp[bagSize]);

        // 打印dp数组
        // System.out.print(dp[goods-1][bagSize] + "\n");
        // for (int i = 0; i < goods; i++) {
        //     for (int j = 0; j <= bagSize; j++) {
        //         System.out.print(dp[i][j] + "\t");
        //     }
        //     System.out.println("\n");
        // }
    }
}

在这里插入图片描述

416.分割等和子集

该题目可以等效为一个重量和价值相等的01背包问题,所以使用一维的数组就可。

  • 因为题目问的是可不可以分为两个等和子集,没有问具体应该怎么分。
  • 动态规划五步曲:
    ① 确定dp[j]的含义 : 容量为j的背包的最大价值
    ② 求递推公式 : dp[j] = max(dp[j], dp[j-nums[i]] + nums[i])
    ③ dp数组如何初始化 : 全部为零
    ④ 确定遍历顺序 : 先遍历物品,再倒叙遍历背包。
  • 实现的特别巧妙,将该问题视为一个重量和价值相等的01背包问题,将目标和作为背包的重量,只要背包重量最大时能达到目标和的价值,即找到了一组数满足目标,那么此时该数组就可以分为等和的子集。
class Solution {
    public boolean canPartition(int[] nums) {
        int total = 0;
        for(int num :nums){
            total += num;
        }
        if(total % 2 == 1)   return false;
        // target就是背包的最大重量
        int target = total / 2;

        int[] dp = new int[target+1];

        // 初始化:数组定义的时候已经被全部赋值0

        // 递推函数
        for(int i = 0; i < nums.length; i++){
            for(int j = target; j >= 0; j--){
                if(j < nums[i])   dp[j] = dp[j];
                else{
                    dp[j] = Math.max(dp[j], dp[j - nums[i]]+nums[i]);
                }
            }
        }

        // 因为target是整除2得到的,所以只要能找到一组数使其和为target
        // 剩下的数的和也是target
        if(dp[target] == target)   return true;
        else    return false;

    }
}

学习时间:

  • 上午两个半小时,整理文档半小时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1291508.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Node.js快速搭建简单的HTTP服务器并发布公网远程访问

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…

基于ssm校园美食交流系统论文

目 录 摘 要 1 前 言 3 第1章 概述 4 1.1 研究背景 4 1.2 研究目的 4 1.3 研究内容 4 第二章 开发技术介绍 5 2.1Java技术 6 2.2 Mysql数据库 6 2.3 B/S结构 7 2.4 SSM框架 8 第三章 系统分析 9 3.1 可行性分析 9 3.1.1 技术可行性 9 3.1.2 经济可行性 10 3.1.3 操作可行性 10…

CentOS 7.9 安装 k8s(详细教程)

文章目录 安装步骤安装前准备事项安装docker准备环境安装kubelet、kubeadm、kubectl初始化master节点安装网络插件calicowork 加入集群 k8s集群测试 安装步骤 安装前准备事项 一台或多台机器&#xff0c;操作系统 CentOS7.x-86_x64硬件配置&#xff1a;2GB或更多RAM&#xff0…

order排序方式研究

请直接看原文: 链接&#xff1a;https://juejin.cn/post/7258182427306197051 --------------------------------------------------------------------------------------------------------------------------------- 一.前言 在MySQL世界中&#xff0c;排序是一个常见而重…

了解linux网络时间服务器

本章主要介绍网络时间服务器。 使用chrony配置时间服务器 配置chrony客户端向服务器同步时间 20.1 时间同步的必要性 些服务对时间要求非常严格&#xff0c;例如&#xff0c;图20-1所示的由三台服务器搭建的ceph集群。 这三台服务器的时间必须保持一致&#xff0c;如果不一致…

10 单词接龙

题目描述 单词接龙的规则是: 可用于接龙的单词首字母必须要前一个单词的尾字母相同; 当存在多个首字母相同的单词时&#xff0c;取长度最长的单词&#xff0c;如果长度也相等&#xff0c;则取字典序最小的单词;已经参与接龙的单词不能重复使用。 现给定一组全部由小写字母组成…

【开发技能】-解决visio交叉线(跨线)交叉点弯曲问题

问题 平时工作中使用visio作图时&#xff0c;经常会遇到交叉线在相交时会形成一个弯曲弓形&#xff0c;这十分影响视图效果。可以采用下面的方法消除弓形。 方法 第一步&#xff1a;菜单栏--设计---连接线 第二步&#xff1a;选中这条交叉线---点击显示跨线 最终问题得到解决…

C#图像处理OpenCV开发指南(CVStar,09)——边缘识别之Scharr算法的实例代码

1 边缘识别之Scharr算法 算法文章很多&#xff0c;不再论述。 1.1 函数原型 void Cv2.Scharr(src,dst,ddepth,dx,dy,scale,delta,borderType&#xff09; 1.2 参数说明 src 代表原始图像。dst 代表目标图像。ddepth 代表输出图像的深度。CV_16Sdx 代表x方向上的求导阶数…

23款奔驰E350eL升级小柏林音响 13个扬声器 590w

小柏林之声音响是13个喇叭1个功放&#xff0c;功率是590W&#xff0c;对应普通音响来说&#xff0c;已经是上等了。像著名的哈曼卡顿音响&#xff0c;还是丹拿音响&#xff0c;或者是BOSE音响&#xff0c;论地位&#xff0c;论音质柏林之声也是名列前茅。 升级小柏林音响&#…

java多人聊天

服务端 package 多人聊天;import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintStream; import java.net.ServerSocket; import java.net.Socket; import java.util.ArrayList;…

qt 5.15.2 主窗体菜单工具栏树控件功能

qt 5.15.2 主窗体菜单工具栏树控件功能 显示主窗体效果&#xff1a; mainwindow.h文件内容&#xff1a; #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QFileDialog> #include <QString> #include <QMessageBox>#inc…

深入理解Sentinel系列-2.Sentinel原理及核心源码分析

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理、分布式技术原理&#x1f525;如果感觉博主的文章还不错的话&#xff…

CAP理论详解

引言 随着分布式系统在现代应用中的广泛应用&#xff0c;工程师们不得不面对诸如数据一致性、可用性和分区容错性等问题。CAP定理作为分布式系统设计的基石之一&#xff0c;为我们提供了在这些问题之间做出权衡的理论依据。本文将深入探讨CAP定理的技术细节、先进性&#xff0…

深度学习记录--广播(Broadcasting)

什么是广播&#xff1f; 广播(Broadcasting)&#xff0c;在python中是一种矩阵初等运算的手段&#xff0c;用于将一个常数扩展成一个矩阵&#xff0c;使得运算可行 广播的作用 比如&#xff1a; 一个1*n的矩阵要和常数b相加&#xff0c;广播使得常数b扩展成一个1*n的矩阵 …

mysql的几种索引

mysql索引的介绍可以mysql官网的词汇表中搜索&#xff1a; https://dev.mysql.com/doc/refman/8.0/en/glossary.html mysql可以在表的一列、或者多列上创建索引&#xff0c;索引的类型可以选择&#xff0c;如下&#xff1a; 普通索引&#xff08;KEY&#xff09; 普通索引可…

SQLserver截取字符串

当我们存的数据是json的时候可以全部取出在模糊查询但是有多个重复数据的时候就没办法准确的模糊出来这个时候我们就需要用的字符串截取 --创建函数create FUNCTION [dbo].[Fmax] (str varchar(50),start VARCHAR(50),length VARCHAR(50)) RETURNS varchar(max) AS BEGINDEC…

McBSP接口概念和使用

copy McBSP包括一个数据通道和一个控制通道&#xff0c;通过7个引脚与外部设备连接。数据发送引脚DX负责数据的发送&#xff0c;数据接收引脚DR负责数据的接收&#xff0c;发送时钟引脚CLKX&#xff0c;接收时钟引脚CLKR&#xff0c;发送帧同步引脚FSX和接收帧同步引脚FSR提供…

Python语言基础知识(一)

文章目录 1、Python内置对象介绍2、标识符与变量3、数据类型—数字4、数据类型—字符串与字节串5、数据类型—列表、元组、字典、集合6、运算符和表达式7、运算符和表达式—算术运算符8、运算符和表达式—关系运算符9.1、运算符和表达式— 成员测试运算符in9.2、运算符和表达式…

外贸平台自建站的教程?做海洋建站的好处?

外贸平台自建站怎么做&#xff1f;搭建网站的具体流程有哪些&#xff1f; 作为外贸从业者&#xff0c;借助互联网平台自建站点已经成为推广业务、拓展市场的一种重要手段。海洋建站将为您提供一份详尽的外贸平台自建站的教程&#xff0c;助您在网络空间中展现您的企业魅力。 …

RocketMQ-RocketMQ⾼性能核⼼原理分析

一、源码环境搭建 1、主要功能模块 ​ RocketMQ的官方Git仓库地址&#xff1a;https://github.com/apache/rocketmq 可以用git把项目clone下来或者直接下载代码包。 ​ 也可以到RocketMQ的官方网站上下载指定版本的源码&#xff1a; http://rocketmq.apache.org/dowloading/…