【基于openGauss5.0.0简单使用DBMind】

news2025/1/18 9:02:53

基于openGauss5.0.0简单使用DBMind

    • 一、环境说明
    • 二、初始化tpch测试数据
    • 三、使用DBMind索引推荐功能
    • 四、使用DBMind实现SQL优化功能

一、环境说明

  1. 虚拟机:virtualbox
  2. 操作系统:openEuler 20.03 TLS
  3. 数据库:openGauss-5.0.0
  4. DBMind:dbmind-5.0.0
    注意环境是基于x86架构

二、初始化tpch测试数据

  1. 使用普通用户如omm登录服务器

  2. 执行如下命令下载测试数据库:

    git clone https://gitee.com/xzp-blog/tpch-kit.git
    
  3. 进入dbgen目录下,生成makefile文件:

    cd /opt/software/tpch-kit/dbgen/
    make -f Makefile
    
  4. 连接openGauss数据库,创建tpch的database:

    gsql -d postgres -p 15432 -r
    openGauss=# CREATE DATABASE tpch; 
    openGauss=# \q
    
  5. 创建8张测试表,执行如下命令:

    cd /opt/software/tpch-kit/dbgen
    gsql -d tpch -f dss.ddl
    

    执行完成后,登录数据库查看,会看到如下8张表:

    					List of relations
     Schema |   Name   | Type  | Owner |             Storage
    --------+----------+-------+-------+----------------------------------
     public | customer | table | omm   | {orientation=row,compression=no}
     public | lineitem | table | omm   | {orientation=row,compression=no}
     public | nation   | table | omm   | {orientation=row,compression=no}
     public | orders   | table | omm   | {orientation=row,compression=no}
     public | part     | table | omm   | {orientation=row,compression=no}
     public | partsupp | table | omm   | {orientation=row,compression=no}
     public | region   | table | omm   | {orientation=row,compression=no}
     public | supplier | table | omm   | {orientation=row,compression=no}
    
  6. 生成8张表测试数据,执行如下命令:

    cd /opt/software/tpch-kit/dbgen
    ./dbgen -vf -s 1
    

    执行结果如下:

    [omm@opengauss01 dbgen]$ ./dbgen -vf -s 1
    TPC-H Population Generator (Version 2.17.3)
    Copyright Transaction Processing Performance Council 1994 - 2010
    Generating data for suppliers table/
    Preloading text ... 100%
    done.
    Generating data for customers tabledone.
    Generating data for orders/lineitem tablesdone.
    Generating data for part/partsupplier tablesdone.
    Generating data for nation tabledone.
    Generating data for region tabledone.
    
  7. 编写导入数据脚本LoadData.sh:

    for i in `ls *.tbl`; do
      table=${i/.tbl/}
      echo "Loading $table..."
      sed 's/|$//' $i > /opt/software/tmp/$i
      gsql tpch -p 15432 -q -c "TRUNCATE $table"
      gsql tpch -p 15432 -c "\\copy $table FROM '/opt/software/tmp/$i' CSV DELIMITER '|'"
    done
    

    注意当前数据库端口为15432
    授予执行权限:

    [omm@opengauss01 dbgen]$ chmod +x LoadData.sh
    
  8. 导入数据到8张表中,执行导入脚本LoadData.sh:

    [omm@opengauss01 dbgen]$ sh LoadData.sh
    

    执行结果如下:

    Loading customer...
    Loading lineitem...
    Loading nation...
    Loading orders...
    Loading partsupp...
    Loading part...
    Loading region...
    Loading supplier...
    
  9. 检验数据是否已完成导入:

    gsql -d tpch -p 15432 -r
    tpch=# select count(*) from supplier;
    

    查看了supplier表的总记录数为:10000条。
    感兴趣可以全部查看8张表各自的总记录数,如下所示:

    至此,已完后TPCH测试数据的导入工作。

  10. 生成相关查询语句,为避免对原有查询语句脚本产生污染,将其复制到queries目录下:

    cd /opt/software/tpch-kit/dbgen
    cp dists.dss queries/
    cp qgen queries/
    cd queries/
    
  11. 编写生成查询语句脚本genda.sh,内容如下:

    cd /opt/software/tpch-kit/dbgen/queries
    vim genda.sh
    

    添加如下内容:

    for i in {1..22}; do
        ./qgen -d $i>$i_new.sql
     ./qgen -d $i_new | sed 's/limit -1//' | sed 's/limit 100//' | sed 's/limit 10//' | sed 's/limit 20//' | sed 's/day (3)/day/' > queries.sql
    done
    
  12. 执行脚本genda.sh:

    cd /opt/software/tpch-kit/dbgen
    sh genda.sh
    
  13. 验证生成的查询语句:

    cd /opt/software/tpch-kit/dbgen/queries
    ls -l queries.sql
    

    结果如下:

    [omm@opengauss01 queries]$ ls -l queries.sql
    -rw-r--r-- 1 omm dbgrp  12K Aug 29 23:49 queries.sql
    

    感兴趣可以查看下queries.sql内容,看下生成了哪些SQL语句
    至此,已完成了查询语句的生成。

  14. 为了测试AP性能,以omm用户上传tpch_ap_data.sql(可点击下载)到/opt/software目录下,然后执行如下命令执行该sql文件:

    gsql -d tpch -p 15432 -r -f /opt/software/tpch_ap_data.sql > /opt/software/tpch_ap_data.sql
    

    执行完成后,整个tpch数据库中相关表如下:

    tpch=# \d
                                            List of relations
     Schema |               Name                |   Type   | Owner |             Storage
    --------+-----------------------------------+----------+-------+----------------------------------
     public | address_dimension                 | table    | omm   | {orientation=row,compression=no}
     public | address_dimension_address_key_seq | sequence | omm   |
     public | customer                          | table    | omm   | {orientation=row,compression=no}
     public | date_dimension                    | table    | omm   | {orientation=row,compression=no}
     public | lineitem                          | table    | omm   | {orientation=row,compression=no}
     public | litemall_orders                   | table    | omm   | {orientation=row,compression=no}
     public | nation                            | table    | omm   | {orientation=row,compression=no}
     public | orders                            | table    | omm   | {orientation=row,compression=no}
     public | part                              | table    | omm   | {orientation=row,compression=no}
     public | partsupp                          | table    | omm   | {orientation=row,compression=no}
     public | region                            | table    | omm   | {orientation=row,compression=no}
     public | supplier                          | table    | omm   | {orientation=row,compression=no}
     public | user_dimension                    | table    | omm   | {orientation=row,compression=no}
     public | user_dimension_user_key_seq       | sequence | omm   |
    

三、使用DBMind索引推荐功能

  1. 第一种使用方式:
    • 以gsql登录到数据库中
      gsql -d tpch -p 15432 -r
      
    • 执行如下命令查看索引推荐
      select * from gs_index_advise('
      SELECT ad.province AS province, SUM(o.actual_price) AS GMV
        FROM litemall_orders o,
             address_dimension ad,
             date_dimension dd
       WHERE o.address_key = ad.address_key
         AND o.add_date = dd.date_key
         AND dd.year = 2020
         AND dd.month = 3
       GROUP BY ad.province
       ORDER BY SUM(o.actual_price) DESC');
      
      结果如下:
       schema |       table       |        column        | indextype
      --------+-------------------+----------------------+-----------
       public | litemall_orders   | address_key,add_date |
       public | address_dimension |                      |
       public | date_dimension    | year                 |
      (3 rows)
      
  2. 第二种使用方式:
    • 登录到DBMind的管理界面中,输入相关SQL语句:

      select * from customer where c_acctbal > 6819.74 order by c_acctbal desc limit 10;
      

      在这里插入图片描述

    • 点击【Advise Index】按钮,正常情况下会看到如下内容:
      在这里插入图片描述

四、使用DBMind实现SQL优化功能

  1. 登录到DBMind的管理界面中,输入相关SQL语句:
    在这里插入图片描述

其他的有关DBMind的功能,大家感兴趣,可自行测试,希望对您有所帮助~~~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1290990.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

信道的极限容量

目录 信道的最高码元传输速率 限制码元在信道上的传输速率的因素: (1)信道能够通过的频率范围 (2) 信噪比 任何实际的信道都不是理想的,在传输信号时会产生各种失真以及带来多种干扰。 码元传输的速率越…

copilot的使用

📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 🌤️安装和配置编辑器&a…

使用GPT-4V解决Pycharm设置问题

pycharm如何实现关联,用中文回答 在PyCharm中关联PDF文件类型,您可以按照以下步骤操作: 1. 打开PyCharm设置:点击菜单栏中的“File”(文件),然后选择“Settings”(设置)。…

逆向修改Unity的安卓包资源并重新打包

在上一篇文章中,我已经讲过如何逆向获取unity打包出来的源代码和资源了,那么这一节我将介绍如何将解密出来的源代码进行修改并重新压缩到apk中。 其实在很多时候,我们不仅仅想要看Unity的源码,我们还要对他们的客户端源码进行修改和调整,比如替换资源,替换服务器连接地址…

机器的深度强化学习算法可以被诱导

设计一个好的奖励函数是机器深度强化学习算法的关键之一。奖励函数用于给予智能体(机器)在环境中采取不同行动时的反馈信号,以指导其学习过程。一个好的奖励函数应该能够引导智能体朝着期望的行为方向学习,并尽量避免潜在的问题&a…

案例059:基于微信小程序的在线投稿系统

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

阿里云云通信短信申请教程免费试用3个月

目录 第一步 开通试用短信 第二步、设置调试参数 第三步、根据文档对接 第一步 开通试用短信 阿里云免费试用 - 阿里云 第二步、设置调试参数 打开试用文档 第三步、根据文档对接 SendSms_短信服务_API文档-阿里云OpenAPI开发者门户

C#核心笔记——(三)在C#中创建类型

3.1 类 类是最常见的一种引用类型,最简单的类的声明如下: class MyClass{}而复杂的类可能包含如下内容: 1.在class关键字之前:类的特性(Attribute)和修饰符。非嵌套的类修饰符有: public、int…

微型5G网关如何满足智能巡检机器人应用

在规模庞大、设施复杂的炼化厂、钢铁厂、工业园区等大型、巨型区域,时刻需要对各类设施设备巡查监测,保障生产运行安全可控。传统的人工巡检存在着心态松懈、工作低效、工作强度高、工作环境恶劣等问题,仍然存在安全隐患。 而随着物联网、5G、…

多人聊天Java

服务端 import java.io.*; import java.net.*; import java.util.ArrayList; public class Server{public static ServerSocket server_socket;public static ArrayList<Socket> socketListnew ArrayList<Socket>(); public static void main(String []args){try{…

STM32F1定时器TIM

目录 1. TIM&#xff08;Timer&#xff09;定时器 2. 定时器类型 2.1 基本定时器框图 2.2 通用定时器框图 2.3 高级定时器框图 3. 定时器代码 3.1 恢复缺省配置 3.2 时基单元初始化 3.3 结构体变量附一个默认值 3.4 使能计数器 3.5 使能中断输出信号 3.…

138. 随机链表的复制

给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成&#xff0c;其中每个新节点的值都设为其对应的原节点的值。新节点的 n…

Hive数据库系列--Hive数据类型/Hive字段类型/Hive类型转换

文章目录 一、Hive数据类型1.1、数值类型1.2、字符类型1.3、日期时间类型1.4、其他类型1.5、集合数据类型1.5.1、Struct举例1.5.2、Array举例1.5.3、Map举例 二、数据类型转换2.1、隐式转换2.2、显示转换 本章主要讲解hive的数据类、字段类型。官网文档地址见https://cwiki.apa…

数据库系统概论复习资料

数据库系统概论考试需知 一、分值分布 1、判断题&#xff08;10分&#xff09; 1分一个 2、填空题&#xff08;20分&#xff09; 2分一个 3、选择题&#xff08;20分&#xff09; 2分一个 4、分析题&#xff08;30分&#xff09; 第一题10分&#xff0c;第二题…

ubuntu安装docker及docker常用命令

docker里有三个部分 daemon 镜像 和 容器 我们需要了解的概念 容器 镜像 数据卷 文章目录 docker命令docker镜像相关命令docker容器相关命令数据卷ubuntu安装docker docker命令 #启动&#xff0c;停止&#xff0c;重启docker systemctl start docker systemctl stop docker s…

2023字节跳动软件测试工程师面试题及答案分享

相信大家都有这样一个忧虑就是面试&#xff0c;不管我们要找什么工作&#xff0c;面试都会是必不可少的&#xff0c;下面是整理出来的面试题和我的一些见解觉得不对的在评论区留言&#xff01; 1、什么是兼容性测试&#xff1f;兼容性测试侧重哪些方面&#xff1f; 参考答案&…

JVM 对象内存布局篇

对象的实例化 创建对象有哪些方式&#xff1f; 1、new对象 最常见的方式 变形1:X的静态方法 变形2:XxxBuilder/XxxFactory的静态方法 2、Class的newlnstance0:反射的方式&#xff0c;只能调用空参的构造器&#xff0c;权限必须是public 3、Constructor的newinstance(X):反射的…

MQTT源码分析

目录 MQTT源码分析 1. MQTT客户端功能 2. 客户端软件如何实现 3. 程序分层 4. 情景分析 4.1 连接服务器 4.2 创建线程 4.3 发布消息 4.4 最复杂&#xff1a;订阅消息 MQTT源码分析 分析源码&#xff1a;mqttclient\test\emqx\test.c 参考资料&#xff1a; kawaii-mqt…

解决vue3使用iconpark控制台预警提示问题

前言 最近在项目中使用 iconpark-icon 来管理图标&#xff0c;一切都很顺利&#xff0c;引入链接后&#xff0c;图标正常显示&#xff0c;没有报错。但是控制台却发出了预警信息。 [Vue warn]: Failed to resolve component: iconpark-icon If this is a native custom eleme…

istio为什么能代替传统的SpringCloud 服务网格Istio概述

服务网格Istio概述 什么是服务网格(Service Mesh)&#xff1f;istio简介边车模式&#xff08;Sidecar&#xff09;为什么istio能代替传统SpringCloud&#xff1f;整体架构 首先奉上 istio官网 什么是服务网格(Service Mesh)&#xff1f; 服务网格详解 服务网格&#xff08;Se…