基于LSTM三分类的文本情感分析,采用LSTM模型,训练一个能够识别文本postive, neutral, negative三种

news2025/1/15 17:50:30

基于LSTM三分类的文本情感分析,采用LSTM模型,训练一个能够识别文本postive, neutral, negative三种 ,含数据集可直接运行

完整代码下载地址:基于LSTM三分类的文本情感分析

基于LSTM三分类的文本情感分析

背景介绍

文本情感分析作为NLP的常见任务,具有很高的实际应用价值。本文将采用LSTM模型,训练一个能够识别文本postive, neutral, negative三种情感的分类器。

本文的目的是快速熟悉LSTM做情感分析任务,所以本文提到的只是一个baseline,并在最后分析了其优劣。对于真正的文本情感分析,在本文提到的模型之上,还可以做很多工作,以后有空的话,笔者可以再做优化。

理论介绍

RNN应用场景

RNN相对于传统的神经网络,它允许我们对向量序列进行操作:输入序列、输出序列、或大部分的输入输出序列。如下图所示,每一个矩形是一个向量,箭头则表示函数(比如矩阵相乘)。输入向量用红色标出,输出向量用蓝色标出,绿色的矩形是RNN的状态(下面会详细介绍)。从做到右:(1)没有使用RNN的Vanilla模型,从固定大小的输入得到固定大小输出(比如图像分类)。(2)序列输出(比如图片字幕,输入一张图片输出一段文字序列)。(3)序列输入(比如情感分析,输入一段文字然后将它分类成积极或者消极情感)。(4)序列输入和序列输出(比如机器翻译:一个RNN读取一条英文语句然后将它以法语形式输出)。(5)同步序列输入输出(比如视频分类,对视频中每一帧打标签)。我们注意到在每一个案例中,都没有对序列长度进行预先特定约束,因为递归变换(绿色部分)是固定的,而且我们可以多次使用。

word2vec 算法

建模环节中最重要的一步是特征提取,在自然语言处理中也不例外。在自然语言处理中,最核心的一个问题是,如何把一个句子用数字的形式有效地表达出来?如果能够完成这一步,句子的分类就不成问题了。显然,一个最初等的思路是:给每个词语赋予唯一的编号1,2,3,4…,然后把句子看成是编号的集合,比如假设1,2,3,4分别代表“我”、“你”、“爱”、“恨”,那么“我爱你”就是[1, 3, 2],“我恨你”就是[1, 4, 2]。这种思路看起来有效,实际上非常有问题,比如一个稳定的模型会认为3跟4是很接近的,因此[1, 3, 2]和[1, 4, 2]应当给出接近的分类结果,但是按照我们的编号,3跟4所代表的词语意思完全相反,分类结果不可能相同。因此,这种编码方式不可能给出好的结果。

读者也许会想到,我将意思相近的词语的编号凑在一堆(给予相近的编号)不就行了?嗯,确实如果,如果有办法把相近的词语编号放在一起,那么确实会大大提高模型的准确率。可是问题来了,如果给出每个词语唯一的编号,并且将相近的词语编号设为相近,实际上是假设了语义的单一性,也就是说,语义仅仅是一维的。然而事实并非如此,语义应该是多维的。

比如我们谈到“家园”,有的人会想到近义词“家庭”,从“家庭”又会想到“亲人”,这些都是有相近意思的词语;另外,从“家园”,有的人会想到“地球”,从“地球”又会想到“火星”。换句话说,“亲人”、“火星”都可以看作是“家园”的二级近似,但是“亲人”跟“火星”本身就没有什么明显的联系了。此外,从语义上来讲,“大学”、“舒适”也可以看做是“家园”的二级近似,显然,如果仅通过一个唯一的编号,是很难把这些词语放到适合的位置的。

Word2Vec:高维来了

从上面的讨论可以知道,很多词语的意思是各个方向发散开的,而不是单纯的一个方向,因此唯一的编号不是特别理想。那么,多个编号如何?换句话说,将词语对应一个多维向量?不错,这正是非常正确的思路。

为什么多维向量可行?首先,多维向量解决了词语的多方向发散问题,仅仅是二维向量就可以360度全方位旋转了,何况是更高维呢(实际应用中一般是几百维)。其次,还有一个比较实际的问题,就是多维向量允许我们用变化较小的数字来表征词语。怎么说?我们知道,就中文而言,词语的数量就多达数十万,如果给每个词语唯一的编号,那么编号就是从1到几十万变化,变化幅度如此之大,模型的稳定性是很难保证的。如果是高维向量,比如说20维,那么仅需要0和1就可以表达2^20=1048576220=1048576(100万)个词语了。变化较小则能够保证模型的稳定性。

扯了这么多,还没有真正谈到点子上。现在思路是有了,问题是,如何把这些词语放到正确的高维向量中?而且重点是,要在没有语言背景的情况下做到这件事情?(换句话说,如果我想处理英语语言任务,并不需要先学好英语,而是只需要大量收集英语文章,这该多么方便呀!)在这里我们不可能也不必要进行更多的原理上的展开,而是要介绍:而基于这个思路,有一个Google开源的著名的工具——Word2Vec。

简单来说,Word2Vec就是完成了上面所说的我们想要做的事情——用高维向量(词向量,Word Embedding)表示词语,并把相近意思的词语放在相近的位置,而且用的是实数向量(不局限于整数)。我们只需要有大量的某语言的语料,就可以用它来训练模型,获得词向量。词向量好处前面已经提到过一些,或者说,它就是问了解决前面所提到的问题而产生的。另外的一些好处是:词向量可以方便做聚类,用欧氏距离或余弦相似度都可以找出两个具有相近意思的词语。这就相当于解决了“一义多词”的问题(遗憾的是,似乎没什么好思路可以解决一词多义的问题。)

关于Word2Vec的数学原理,读者可以参考这系列文章。而Word2Vec的实现,Google官方提供了C语言的源代码,读者可以自行编译。而Python的Gensim库中也提供现成的Word2Vec作为子库(事实上,这个版本貌似比官方的版本更加强大)。

句向量

接下来要解决的问题是:我们已经分好词,并且已经将词语转换为高维向量,那么句子就对应着词向量的集合,也就是矩阵,类似于图像处理,图像数字化后也对应一个像素矩阵;可是模型的输入一般只接受一维的特征,那怎么办呢?一个比较简单的想法是将矩阵展平,也就是将词向量一个接一个,组成一个更长的向量。这个思路是可以,但是这样就会使得我们的输入维度高达几千维甚至几万维,事实上是难以实现的。(如果说几万维对于今天的计算机来说不是问题的话,那么对于1000x1000的图像,就是高达100万维了!)

在自然语言处理中,通常用到的方法是递归神经网络或循环神经网络(都叫RNNs)。它们的作用跟卷积神经网络是一样的,将矩阵形式的输入编码为较低维度的一维向量,而保留大多数有用信息

Show me the code

工程代码主要是结合参考资料2做三分类的文本情感分析;

数据预处理与词向量模型训练

参考资料二中有很翔实的处理过程,包括:

  1. 不同类别数据整理成输入矩阵
  2. jieba分词
  3. Word2Vec词向量模型训练

本文中就不做重复介绍了,想要了解的,可以去参考资料二的博文中查找。

三分类除了涉及到positive和negative两种情感外,还有一种neural情感,从原始数据集中可以提取到有语义转折的句子,“然而”,“但”都是关键词。从而可以得到3份不同语义的数据集。

LSTM三分类模型

代码需要注意的几点是,第一是,标签需要使用keras.utils.to_categorical来yummy,第二是LSTM二分类的参数设置跟二分有区别,选用softmax,并且loss函数也要改成categorical_crossentropy,代码如下:

def get_data(index_dict,word_vectors,combined,y):

    n_symbols = len(index_dict) + 1  # 所有单词的索引数,频数小于10的词语索引为0,所以加1
    embedding_weights = np.zeros((n_symbols, vocab_dim)) # 初始化 索引为0的词语,词向量全为0
    for word, index in index_dict.items(): # 从索引为1的词语开始,对每个词语对应其词向量
        embedding_weights[index, :] = word_vectors[word]
    x_train, x_test, y_train, y_test = train_test_split(combined, y, test_size=0.2)
    y_train = keras.utils.to_categorical(y_train,num_classes=3) 
    y_test = keras.utils.to_categorical(y_test,num_classes=3)
    # print x_train.shape,y_train.shape
    return n_symbols,embedding_weights,x_train,y_train,x_test,y_test


##定义网络结构
def train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test):
    print 'Defining a Simple Keras Model...'
    model = Sequential()  # or Graph or whatever
    model.add(Embedding(output_dim=vocab_dim,
                        input_dim=n_symbols,
                        mask_zero=True,
                        weights=[embedding_weights],
                        input_length=input_length))  # Adding Input Length
    model.add(LSTM(output_dim=50, activation='tanh'))
    model.add(Dropout(0.5))
    model.add(Dense(3, activation='softmax')) # Dense=>全连接层,输出维度=3
    model.add(Activation('softmax'))

    print 'Compiling the Model...'
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',metrics=['accuracy'])

    print "Train..." # batch_size=32
    model.fit(x_train, y_train, batch_size=batch_size, epochs=n_epoch,verbose=1)

    print "Evaluate..."
    score = model.evaluate(x_test, y_test,
                                batch_size=batch_size)

    yaml_string = model.to_yaml()
    with open('../model/lstm.yml', 'w') as outfile:
        outfile.write( yaml.dump(yaml_string, default_flow_style=True) )
    model.save_weights('../model/lstm.h5')
    print 'Test score:', score

测试

代码如下:

def lstm_predict(string):
    print 'loading model......'
    with open('../model/lstm.yml', 'r') as f:
        yaml_string = yaml.load(f)
    model = model_from_yaml(yaml_string)

    print 'loading weights......'
    model.load_weights('../model/lstm.h5')
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',metrics=['accuracy'])
    data=input_transform(string)
    data.reshape(1,-1)
    #print data
    result=model.predict_classes(data)
    # print result # [[1]]
    if result[0]==1:
        print string,' positive'
    elif result[0]==0:
        print string,' neutral'
    else:
        print string,' negative'

经过检测,发现,原先在二分类模型中的“不是太好”,“不错不错”这样子带有前后语义转换的句子,都能正确预测,实战效果提升明显,但是也有缺点,缺点是中性评价出现的概率不高,笔者分析原因是,首先从数据集数量和质量着手,中性数据集的数量要比其他两个数据集少一半多,并且通过简单规则“然而”,“但”提取出来的中性数据集质量也不是很高,所以才会出现偏差。总而言之,训练数据的质量是非常重要的,如何获取高质量高数量的训练样本,也就成了新的难题。

完整代码下载地址:基于LSTM三分类的文本情感分析

  • 参考资料

文本情感分类(二):深度学习模型

Shopping Reviews sentiment analysis

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/129093.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Comic Life - 超棒的漫画制作工具,拥有多种动画模版,创作属于自己的漫画

Comic Life - 超棒的漫画制作工具,拥有多种动画模版,创作属于自己的漫画 Comic Life是一个照片编辑器,能够添加各种效果,并基于它们创建漫画。该工具包包括各种各样的模板,可以很容易地将照片放置在工作表上&#xff0…

CKEditor 为你的Flask项目添加一个富文本编辑器

人家高高在上的CKEditor是有个官网的!! WYSIWYG HTML Editor with Collaborative Rich Text EditingRock-solid, Free WYSIWYG Editor with Collaborative Editing, 200 features, Full Documentation and Support. Trusted by 20k companies.https://c…

SBM模型分析全流程

数据包络分析DEA时,其研究投入产出效率情况,并且其假定投入和产出之间存在单调线性关系,其为一种线性规划技术来确定DMU相对效率的方法。但有时候会多出下‘非期望产出’,就是不希望有它产出,比如资金投入、教育投入换…

【Unity3D日常开发】Unity3D拓展开发:UI界面控制,UI界面的显示和隐藏实现

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客QQ群:1040082875 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 在开发中,可能遇到管理…

2022最后一天盘点

今天是今年最后的一天工作日,对于我来说就是今年的最后一天,因为放假了我就不需要思考了(当然公司后端程序员要保持24小时oncall) 1 阳完之后 还是有些 咳嗽,公司此起彼伏的咳嗽声,不知道什么时候所有人都…

21.合并两个有序链表

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2: 输入:l1 [], l2 [] 输出:[…

【日常系列】LeetCode《23·回溯2》

数据规模->时间复杂度 <10^4 &#x1f62e;(n^2) <10^7:o(nlogn) <10^8:o(n) 10^8<:o(logn),o(1) 内容 lc 401 &#xff1a;二进制手表 https://leetcode.cn/problems/binary-watch/ 提示&#xff1a; 0 < turnedOn < 10 class Solution:def readBinary…

java jvm详解

java 系列文章之JVM 文章目录java 系列文章之JVM一、JVM1.基本概念2.运行过程二、线程三、JVM 内存区域1. 程序计数器(线程私有)2. 虚拟机栈(线程私有)3. 本地方法区(线程私有)4. 堆&#xff08;Heap-线程共享&#xff09;-运行时数据区5. 方法区/永久代&#xff08;线程共享&a…

UE4.27 C++调用DLL

1.首先在UE C项目中添加一个x64动态链接库&#xff0c;取名RouteInterface,放到Source下面&#xff1b; 2.在Source下面新建两个文件夹Include和Lisbs,这两个文件夹用来保存库的头文件和lib文件 3.在项目RouteInterface下面添加一个类&#xff1a;TestDll,并且把头文件保存到…

Mybatis-Plus查询投影与查询条件设置

目录 查询投影 查询指定字段 聚合查询 分组查询 查询条件设置 等值查询 范围查询 模糊查询 排序查询 查询投影 目前我们在查询数据的时候&#xff0c;什么都没有做默认就是查询表中所有字段的内容而查询投影即不查询所有字段&#xff0c;只查询出指定内容的数据 查询指…

九、文件File、IO流

文件File File可以用来表示计算机中的文件或者文件夹官方定义&#xff1a;文件和文件夹路径名的抽象表示形式 3种构造 1File(String pathname) 通过将给定的路径名字符串转换为抽象路径名来创建新的File实例2File(String parent, String child) 从父路径名字符串和子路径名字…

2022硅谷大厂的大!失!败!AiDA时尚设计师助手;2023热门IT技能预告;Uber送货机器人;GitHub今日热榜 | ShowMeAI资讯日报

&#x1f440;日报合辑 | &#x1f3a1;AI应用与工具大全 | &#x1f514;公众号资料下载 | &#x1f369;韩信子 &#x1f4e2; 『抖音』2022抖音热点数据报告&#xff0c;共度温暖岁末 抖音热点联合巨量算数&#xff0c;发布了《2022抖音热点数据报告》&#xff0c;盘点了20…

如何在pycharm上安装tensorflow

TensorFlow™是一个基于数据流编程&#xff08;dataflow programming&#xff09;的符号数学系统&#xff0c;被广泛应用于各类机器学习&#xff08;machine learning&#xff09;算法的编程实现&#xff0c;其前身是谷歌的神经网络算法库DistBelief 。 Tensorflow拥有多层级结…

qt 崩溃处理

Windows系统MSVC编译器的dump文件 debug模式 生成exe自带生成pdb文件&#xff0c;所以无需处理。 1.生成dump文件 通过修改注册表&#xff0c;增加注册表HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error Reporting\LocalDumps 具体见&#xff1a;利用vs 分…

Forrester Wave发布最新报告 腾讯云数据连接器评分卓越

全球权威研究机构 Forrester 在2022年12月8日最新发布的《中国公有云开发和基础设施平台&#xff0c;Q4 2022》报告中&#xff0c;腾讯云获得高分&#xff0c;位列“领导者象限”。Forrester在报告中提出&#xff1a;“企业在进行公有云开发和基设施平台提供商的选项中&#xf…

php宝塔搭建部署实战帮管客CRM客户管理系统源码

大家好啊&#xff0c;我是测评君&#xff0c;欢迎来到web测评。 本期给大家带来一套php开发的帮管客CRM客户管理系统源码&#xff0c;感兴趣的朋友可以自行下载学习。 技术架构 PHP7.2 nginx mysql5.7 JS CSS HTMLcnetos7以上 宝塔面板 文字搭建教程 下载源码&#xf…

商业智能BI中,业务质量分析和业务成本分析

最初谁也没有想到&#xff0c;信息化 、数字化技术及其应用能够在如此短时间内快速覆盖了社会的方方面面&#xff0c;如今人们的衣食住行和工作生活娱乐都离不开数字化、数据的身影。 数据分析&#xff0c;是离不开业务的&#xff0c;只有把业务研究好了&#xff0c;所做出的报…

Numpy 数组切片

一、列表切片&#xff08;一维数组&#xff09; 1.1、切片原理 列表切片是从原始列表中提取列表的一部分的过程。在列表切片中&#xff0c;我们将根据所需内容&#xff08;如&#xff0c;从何处开始&#xff0c;结束以及增量进行切片&#xff09;剪切列表。Python中符合序列的…

【论文阅读】Online Decision Based Visual Tracking via Reinforcement Learning

Online Decision Based Visual Tracking via Reinforcement Learning 概述 本文2020年发布于NeurIPS(CCF-A)。视觉跟踪通常基于目标检测或者模板区配&#xff0c;但它们都只适用于特定的场景或对象。因为它们遵循不同的跟踪原则&#xff0c;直接将它们融合在一起是不明智的。…

会话技术和JSP技术

会话技术&#xff1a;一次会话中包含多次的请求和响应 一次会话&#xff1a;浏览器第一次给服务器资源发送请求&#xff0c;会话建立&#xff0c;直到有一方断开为止 功能&#xff1a;在一次会话的范围内共享数据 方式&#xff1a; 1、客户端会话技术&#xff1a;Cookie 2、服务…